Widely tunable and narrow-linewidth violet lasers enabled by UV-transparent materials

Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) rang...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 16; no. 1; pp. 10294 - 9
Main Authors: Franken, C. A. A., Hendriks, W. A. P. M., Winkler, L. V., do Nascimento Jr, A. R., van Rees, A., Dijkstra, M., Mardani, S., Kienzler, D., Dekker, R., van Kerkhof, J., van der Slot, P. J. M., García-Blanco, S. M., Boller, K.-J.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 21.11.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV. Integrating UV lasers is of interest for portable optical clocks and ion-based quantum computers, but material absorption has impeded progress. Here, authors demonstrate a violet integrated laser using UV-transparent materials with mW-level output, narrow linewidth and precise frequency control.
AbstractList Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV.
Abstract Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV.
Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV.Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV.
Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV. Integrating UV lasers is of interest for portable optical clocks and ion-based quantum computers, but material absorption has impeded progress. Here, authors demonstrate a violet integrated laser using UV-transparent materials with mW-level output, narrow linewidth and precise frequency control.
Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV.Integrating UV lasers is of interest for portable optical clocks and ion-based quantum computers, but material absorption has impeded progress. Here, authors demonstrate a violet integrated laser using UV-transparent materials with mW-level output, narrow linewidth and precise frequency control.
ArticleNumber 10294
Author van Rees, A.
García-Blanco, S. M.
Winkler, L. V.
Hendriks, W. A. P. M.
Dijkstra, M.
van Kerkhof, J.
do Nascimento Jr, A. R.
Franken, C. A. A.
van der Slot, P. J. M.
Boller, K.-J.
Dekker, R.
Kienzler, D.
Mardani, S.
Author_xml – sequence: 1
  givenname: C. A. A.
  orcidid: 0000-0003-1847-0812
  surname: Franken
  fullname: Franken, C. A. A.
  email: c.a.a.franken@utwente.nl
  organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente
– sequence: 2
  givenname: W. A. P. M.
  surname: Hendriks
  fullname: Hendriks, W. A. P. M.
  organization: Integrated Optical Systems, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, Aluvia Photonics B.V
– sequence: 3
  givenname: L. V.
  orcidid: 0009-0007-2669-8223
  surname: Winkler
  fullname: Winkler, L. V.
  organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, TOPTICA Photonics SE
– sequence: 4
  givenname: A. R.
  orcidid: 0009-0007-7645-7022
  surname: do Nascimento Jr
  fullname: do Nascimento Jr, A. R.
  organization: PHIX B.V
– sequence: 5
  givenname: A.
  orcidid: 0000-0002-8862-5413
  surname: van Rees
  fullname: van Rees, A.
  organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente
– sequence: 6
  givenname: M.
  surname: Dijkstra
  fullname: Dijkstra, M.
  organization: Integrated Optical Systems, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente
– sequence: 7
  givenname: S.
  surname: Mardani
  fullname: Mardani, S.
  organization: Integrated Optical Systems, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente
– sequence: 8
  givenname: D.
  surname: Kienzler
  fullname: Kienzler, D.
  organization: Department of Physics, ETH Zurich, Quantum Center, ETH Zurich
– sequence: 9
  givenname: R.
  surname: Dekker
  fullname: Dekker, R.
  organization: LioniX International B.V
– sequence: 10
  givenname: J.
  surname: van Kerkhof
  fullname: van Kerkhof, J.
  organization: PHIX B.V
– sequence: 11
  givenname: P. J. M.
  orcidid: 0000-0001-7473-1752
  surname: van der Slot
  fullname: van der Slot, P. J. M.
  organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, Nonlinear Nanophotonics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente
– sequence: 12
  givenname: S. M.
  surname: García-Blanco
  fullname: García-Blanco, S. M.
  organization: Integrated Optical Systems, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, Aluvia Photonics B.V
– sequence: 13
  givenname: K.-J.
  orcidid: 0000-0001-6628-610X
  surname: Boller
  fullname: Boller, K.-J.
  organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41271687$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URMvSP8ABReLCJeDxV5wjqvioVIkLC0fLjifFq6y92AnV_nvMphTEgbnMyHremfG8T8lZTBEJeQ70NVCu3xQBQnUtZbJVkgG07BG5YFRACx3jZ3_V5-SylB2twXvQQjwh5wJYB0p3F2T7NXicjs28ROsmbGz0TbQ5p7t2ChHvgp-_NT9CmnBuJlswlwZPpG_csdl-aedsYznYjHFu9nbGHOxUnpHHY014eZ83ZPv-3eerj-3Npw_XV29v2oFLztreDYr3IyovLQo-qK73nWJWQ2cpygG4shKcYwqBUTuCZ73jimmkSgmn-YZcr319sjtzyGFv89EkG8zpIeVbY_MchgnNKJnTjjLW6VFI4bWmVgEoR3Vdo07fkFdrr0NO3xcss9mHMuA02YhpKYazTtSbSgkVffkPuktLjvWnJ4pzCUxV6sU9tbg9-of1fh-_AmwFhpxKyTg-IEDNL5PNarKpJpuTyYZVEV9FpcLxFvOf2f9R_QRGxqav
Cites_doi 10.1103/PhysRevB.19.3107
10.1117/12.2552264
10.1109/JQE.1986.1072909
10.1116/1.1418404
10.1063/1.5038044
10.1063/1.5088164
10.1364/OE.505892
10.1364/AOP.411024
10.1038/s41586-022-05119-9
10.1063/1.3194139
10.1038/s41598-023-46877-4
10.1364/OL.486758
10.1063/1.5052502
10.1143/JJAP.46.1713
10.1016/S0022-3093(05)80513-7
10.1109/JPROC.2018.2861576
10.1364/OME.393058
10.1116/5.0065951
10.1364/OE.386356
10.1364/OL.551736
10.1109/JLT.2021.3089881
10.1021/acsphotonics.2c00891
10.1364/ASSL.2019.ATu1A.4
10.1364/OPTICA.6.000745
10.4028/www.scientific.net/AMR.900.333
10.1103/PhysRevA.56.2699
10.1364/OPTICA.489504
10.1103/PhysRev.112.1940
10.1126/science.1231298
10.1063/1.1929851
10.1364/OE.416398
10.1364/OE.492510
10.1063/5.0052163
10.3390/photonics7010004
10.1063/1.4824771
10.1007/s11128-004-3105-1
10.1364/OL.38.002521
10.1038/nnano.2016.139
10.1063/5.0231827
10.1117/12.3043811
10.1063/5.0081660
10.1364/OE.398906
10.1109/JQE.1984.1072472
10.1109/JQE.1982.1071522
10.1103/PhysRev.133.A553
10.1109/JSTQE.2018.2793945
10.1038/s41566-022-01120-w
10.1364/AO.18.001847
10.1038/s41467-022-31989-8
10.1016/S0040-6090(02)01262-2
10.1103/PhysRevD.94.124043
10.1109/JSTQE.2012.2234445
10.1080/23746149.2020.1833753
10.1038/s41534-023-00737-1
10.1021/acsphotonics.0c01382
10.1364/OE.523985
10.1038/s41566-021-00761-7
10.1016/j.physleta.2017.04.043
10.3390/app11136004
10.1103/PRXQuantum.2.020343
10.1103/PhysRevX.11.041033
10.1007/s00340-014-5932-9
10.1364/OL.433636
10.1109/JSTQE.2015.2422752
10.1364/OE.402802
10.1103/RevModPhys.87.637
10.1364/OE.26.011147
10.1103/PhysRevA.99.061801
10.1117/12.2227580
10.1038/s41586-020-2811-x
10.1002/mop.11185
10.1038/s41566-019-0359-9
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-025-65211-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_f52b8b02278f454d880a6116b089bce4
41271687
10_1038_s41467_025_65211_2
Genre Journal Article
GrantInformation_xml – fundername: Dutch Research Council (NWO) under the grant ”Ultra-narrowband lasers on a chip” (16718)
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
ID FETCH-LOGICAL-c3532-9bc639fe6d5ae43c679d762a817a0e5c136a51bb26e120af1d29b3628e0664b83
IEDL.DBID M7P
ISSN 2041-1723
IngestDate Mon Nov 24 19:21:17 EST 2025
Sat Nov 22 19:12:48 EST 2025
Sun Nov 23 03:42:22 EST 2025
Tue Nov 25 01:40:47 EST 2025
Thu Nov 27 01:02:02 EST 2025
Sat Nov 22 01:14:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-9bc639fe6d5ae43c679d762a817a0e5c136a51bb26e120af1d29b3628e0664b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-2669-8223
0000-0001-6628-610X
0000-0001-7473-1752
0009-0007-7645-7022
0000-0003-1847-0812
0000-0002-8862-5413
OpenAccessLink https://www.proquest.com/docview/3274335126?pq-origsite=%requestingapplication%
PMID 41271687
PQID 3274335126
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_f52b8b02278f454d880a6116b089bce4
proquest_miscellaneous_3274204551
proquest_journals_3274335126
pubmed_primary_41271687
crossref_primary_10_1038_s41467_025_65211_2
springer_journals_10_1038_s41467_025_65211_2
PublicationCentury 2000
PublicationDate 20251121
PublicationDateYYYYMMDD 2025-11-21
PublicationDate_xml – month: 11
  year: 2025
  text: 20251121
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 65211_CR38
65211_CR39
65211_CR45
65211_CR46
65211_CR47
65211_CR48
65211_CR41
65211_CR42
65211_CR2
65211_CR43
65211_CR1
65211_CR44
65211_CR4
65211_CR3
65211_CR6
65211_CR5
65211_CR40
65211_CR8
65211_CR7
D Zhu (65211_CR75) 2021; 13
65211_CR9
65211_CR27
65211_CR28
65211_CR29
65211_CR34
65211_CR35
65211_CR36
65211_CR37
65211_CR30
65211_CR74
65211_CR31
65211_CR32
65211_CR76
65211_CR33
65211_CR77
65211_CR70
65211_CR71
65211_CR72
65211_CR73
Y Fan (65211_CR24) 2020; 28
65211_CR16
65211_CR17
65211_CR18
65211_CR19
65211_CR23
65211_CR67
65211_CR68
65211_CR25
65211_CR69
65211_CR26
65211_CR63
65211_CR20
65211_CR64
65211_CR21
65211_CR65
65211_CR22
65211_CR66
65211_CR60
65211_CR61
65211_CR62
65211_CR49
65211_CR12
65211_CR56
65211_CR13
65211_CR57
65211_CR14
65211_CR58
65211_CR15
65211_CR59
65211_CR52
65211_CR53
65211_CR10
65211_CR54
65211_CR11
65211_CR55
65211_CR50
65211_CR51
References_xml – ident: 65211_CR16
  doi: 10.1103/PhysRevB.19.3107
– ident: 65211_CR21
– ident: 65211_CR44
  doi: 10.1117/12.2552264
– ident: 65211_CR65
  doi: 10.1109/JQE.1986.1072909
– ident: 65211_CR54
  doi: 10.1116/1.1418404
– ident: 65211_CR33
  doi: 10.1063/1.5038044
– ident: 65211_CR51
  doi: 10.1063/1.5088164
– ident: 65211_CR13
  doi: 10.1364/OE.505892
– volume: 13
  start-page: 242
  year: 2021
  ident: 65211_CR75
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.411024
– ident: 65211_CR32
  doi: 10.1038/s41586-022-05119-9
– ident: 65211_CR43
  doi: 10.1063/1.3194139
– ident: 65211_CR50
  doi: 10.1038/s41598-023-46877-4
– ident: 65211_CR29
  doi: 10.1364/OL.486758
– ident: 65211_CR14
  doi: 10.1063/1.5052502
– ident: 65211_CR3
– ident: 65211_CR53
  doi: 10.1143/JJAP.46.1713
– ident: 65211_CR76
  doi: 10.1016/S0022-3093(05)80513-7
– ident: 65211_CR10
  doi: 10.1109/JPROC.2018.2861576
– ident: 65211_CR61
  doi: 10.1364/OME.393058
– ident: 65211_CR12
  doi: 10.1116/5.0065951
– ident: 65211_CR42
  doi: 10.1364/OE.386356
– ident: 65211_CR46
  doi: 10.1364/OL.551736
– ident: 65211_CR57
  doi: 10.1109/JLT.2021.3089881
– ident: 65211_CR41
  doi: 10.1021/acsphotonics.2c00891
– ident: 65211_CR58
  doi: 10.1364/ASSL.2019.ATu1A.4
– ident: 65211_CR25
  doi: 10.1364/OPTICA.6.000745
– ident: 65211_CR74
  doi: 10.4028/www.scientific.net/AMR.900.333
– ident: 65211_CR56
  doi: 10.1103/PhysRevA.56.2699
– ident: 65211_CR23
  doi: 10.1364/OPTICA.489504
– ident: 65211_CR45
  doi: 10.1103/PhysRev.112.1940
– ident: 65211_CR4
  doi: 10.1126/science.1231298
– ident: 65211_CR64
  doi: 10.1063/1.1929851
– ident: 65211_CR47
  doi: 10.1364/OE.416398
– ident: 65211_CR17
  doi: 10.1364/OE.492510
– ident: 65211_CR19
  doi: 10.1063/5.0052163
– ident: 65211_CR26
  doi: 10.3390/photonics7010004
– ident: 65211_CR77
  doi: 10.1063/1.4824771
– ident: 65211_CR11
  doi: 10.1007/s11128-004-3105-1
– ident: 65211_CR55
  doi: 10.1364/OL.38.002521
– ident: 65211_CR6
  doi: 10.1038/nnano.2016.139
– ident: 65211_CR59
  doi: 10.1063/5.0231827
– ident: 65211_CR60
  doi: 10.1117/12.3043811
– ident: 65211_CR31
  doi: 10.1063/5.0081660
– volume: 28
  start-page: 21713
  year: 2020
  ident: 65211_CR24
  publication-title: Opt. Express
  doi: 10.1364/OE.398906
– ident: 65211_CR70
  doi: 10.1109/JQE.1984.1072472
– ident: 65211_CR69
  doi: 10.1109/JQE.1982.1071522
– ident: 65211_CR67
  doi: 10.1103/PhysRev.133.A553
– ident: 65211_CR9
  doi: 10.1109/JSTQE.2018.2793945
– ident: 65211_CR30
  doi: 10.1038/s41566-022-01120-w
– ident: 65211_CR62
  doi: 10.1364/AO.18.001847
– ident: 65211_CR18
  doi: 10.1038/s41467-022-31989-8
– ident: 65211_CR39
  doi: 10.1016/S0040-6090(02)01262-2
– ident: 65211_CR52
  doi: 10.1103/PhysRevD.94.124043
– ident: 65211_CR63
  doi: 10.1109/JSTQE.2012.2234445
– ident: 65211_CR34
  doi: 10.1080/23746149.2020.1833753
– ident: 65211_CR22
  doi: 10.1038/s41534-023-00737-1
– ident: 65211_CR37
  doi: 10.1021/acsphotonics.0c01382
– ident: 65211_CR28
  doi: 10.1364/OE.523985
– ident: 65211_CR40
  doi: 10.1038/s41566-021-00761-7
– ident: 65211_CR72
  doi: 10.1016/j.physleta.2017.04.043
– ident: 65211_CR20
– ident: 65211_CR68
  doi: 10.3390/app11136004
– ident: 65211_CR5
  doi: 10.1103/PRXQuantum.2.020343
– ident: 65211_CR7
  doi: 10.1103/PhysRevX.11.041033
– ident: 65211_CR2
  doi: 10.1007/s00340-014-5932-9
– ident: 65211_CR27
  doi: 10.1364/OL.433636
– ident: 65211_CR48
  doi: 10.1109/JSTQE.2015.2422752
– ident: 65211_CR35
  doi: 10.1364/OE.402802
– ident: 65211_CR1
  doi: 10.1103/RevModPhys.87.637
– ident: 65211_CR15
  doi: 10.1364/OE.26.011147
– ident: 65211_CR71
  doi: 10.1103/PhysRevA.99.061801
– ident: 65211_CR73
  doi: 10.1117/12.2227580
– ident: 65211_CR8
  doi: 10.1038/s41586-020-2811-x
– ident: 65211_CR38
  doi: 10.1002/mop.11185
– ident: 65211_CR66
– ident: 65211_CR49
– ident: 65211_CR36
  doi: 10.1038/s41566-019-0359-9
SSID ssj0000391844
Score 2.487204
Snippet Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or...
Abstract Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 10294
SubjectTerms 639/624/1020/1093
639/624/1075/1079
639/624/400/1021
639/925/927/1021
Aluminum
Aluminum oxide
Circuits
Clocks
Computers
Diodes
Embedding
Frequency control
Gallium
Gallium nitrides
Humanities and Social Sciences
Ion traps (instrumentation)
Laser applications
Lasers
Light
Material absorption
multidisciplinary
Photonics
Propagation
Quantum computers
Quantum computing
Science
Science (multidisciplinary)
Semiconductor lasers
Semiconductors
Silica
Silicon nitride
Ultraviolet lasers
Waveguides
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hVCQuCEqBUFq5Um9tRPwZ50grUA8V6oFt92bZsaNyCYjNgvbfd2xnt1sB6oVLDoll2TPjmTea-A3AR-2tZh2VmJu0-KCsLtHniVJILjQPNOiQNP29vrzU02nzY63VV_wnLNMDZ8GddpI57SLRne6EFB7tzSpKlat049qQmEAR9awlU8kH8wZTFzHekqm4Pp2J5BNi91aFIYuW7J9IlAj7n0KZjyqkKfBc7MLOiBjJWV7pHmyE_jVs5R6Si32Y_IpEVQsyzNMtKGJ7T_rErFhGBPlw7YffJJXfB4JIGdEeCWmkJ25BJj_LIdGbxzthA0H4mi3yDUwuzq--fivHXgllyyVnJcoCsUYXlJc2CN6quvHo56ymta2CbClXVlLnmAqUVbajnjUOg5cOiDmE0_wANvubPhwBaTGjqTxXDeZ-QnnXCM5C47l3OC-KtoBPS7mZ20yJYVIpm2uTpWxQyiZJ2bACvkTRrkZGOuv0ApVsRiWb_ym5gJOlYsx4xmaGY0LNOQIWVcCH1Wc8HbHkYftwM89jIuG-pAUcZoWuVhINkypdF_B5qeG_kz-_oeOX2NBb2GbRFKMd0hPYHO7m4R28au-H69nd-2TLfwC3WvHB
  priority: 102
  providerName: Directory of Open Access Journals
Title Widely tunable and narrow-linewidth violet lasers enabled by UV-transparent materials
URI https://link.springer.com/article/10.1038/s41467-025-65211-2
https://www.ncbi.nlm.nih.gov/pubmed/41271687
https://www.proquest.com/docview/3274335126
https://www.proquest.com/docview/3274204551
https://doaj.org/article/f52b8b02278f454d880a6116b089bce4
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuyBx4f0ILJWRuIG18TPOCbFoVyBBFSEKhYsVxw7sJV3aFNR_z9hJu0I8Llx8iC3Lzjw9Y38D8MT42vCWKTybNNgwXlDUeZJKJaQRgQUTEqXfFNOpmc_Lagy4rcZrlVudmBS1XzQxRn4k8PgkBJon_fz8G41Vo2J2dSyhsQcHESVBpKt71S7GEtHPjZTjW5lcmKOVTJoh1nDVaLgY5b_YowTb_ydf87c8aTI_p9f_d-E34NroeJIXA6fchEuhuwVXhlKUm9sw-xjxrjakX6fHVKTuPOkSQCONjuiPM99_JSmL3xN0uNFpJCGN9MRtyOwD7RNKenxa1hP0ggfGvgOz05P3L1_RseQCbYQSnJauQZelDdqrOkjR6KL0qC5rw4o6D6phQteKOcd1YDyvW-Z56dAGmoCui3RG3IX9btGF-0AaPBjlXugSj5BSe1dKwUPphXc4L9Img6fbH2_PB2QNmzLiwtiBTBbJZBOZLM_gONJmNzKiYqcPi-UXOwqZbRV3xkVQRNNKJT3qplozpl1ucGNBZnC4JZEdRXVlL-iTweNdNwpZzJzUXVishzERt1-xDO4NHLFbSeRvpk2RwbMti1xM_vcNPfj3Wh7CVR65NLIoO4T9frkOj-By870_Wy0nsFfMi9SaCRwcn0yrd5MUTZgkAcC2Up-xp3r9tvr0ExygB40
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgRKPGjzjOASFeVasuqx660JuxY6ftJVt2s1T7p_iNjJ1kK8Tj1gOXHBLLsuNvvpnx2DMAL5QzitU0R9-kwgdlRYqcJ1KRc6G4p175uNKjYjxWh4fl_hr8GO7ChGOVAydGonbTKuyRb3F0nzhH9STfnH5LQ9WoEF0dSmh0sNjzyzN02eavdz_g-r5kbPvjwfudtK8qkFY85ywtbYVaufbS5cYLXsmidMgIRtHCZD6vKJcmp9Yy6SnLTE0dKy3SvPKonYVVHPu9BJfRjGAqHhXcX-3phGzrSoj-bk7G1dZcRCYKNWMlKkqasl_0XywT8Cfb9re4bFR32zf_tx91C270hjV520nCbVjzzR242pXaXN6FyZeQz2tJ2kW8LEZM40gTE1CmwdA-O3HtMYmnFFqCDgUaxcTHlo7YJZl8TtuYBT5cnWsJWvmd4N6DyYXM6T6sN9PGPwRSoeOXOS5LdJGFdLYUnPnScWexX8RCAq-GhdanXeYQHSP-XOkOFhphoSMsNEvgXcDCqmXI-h1fTGdHuicRXefMKhuSPqpa5MIh9xpJqbSZwol5kcDGAAndU9Fcn-Mhgeerz0giITJkGj9ddG1CXYKcJvCgQ-BqJEF-qVRFApsDJM87__uEHv17LM_g2s7Bp5Ee7Y73HsN1FiQkiAfdgPV2tvBP4Er1vT2Zz55GESPw9aKh-hPFcVu7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaLGzzgHhICyomq12gMLvblx7LS9ZMtulmr_Gr-OsZNshXjceuCSQ2JZcfzNNzPxPABeaFdqVlOJvkmFF8ryFDlPpEJyobmnXvu40_v5eKwPDorJBvwYcmFCWOXAiZGo3awK_8i3ObpPnMuQ8FL3YRGTndHb029p6CAVTlqHdhodRPb86gzdt8Wb3R3c65eMjT5-_vAp7TsMpBWXnKWFrVBD1145WXrBK5UXDtmh1DQvMy8rylUpqbVMecqysqaOFRYpX3vU1MJqjvNegst5KFoewwYn6_87ofK6FqLP08m43l6IyEqhf6xCpUlT9osujC0D_mTn_nZGG1Xf6Ob__NFuwY3e4CbvOgm5DRu-uQNXuxacq7sw_RrqfK1Iu4xJZKRsHGliYco0GOBnJ649JjF6oSXoaKCxTHwc6YhdkemXtI3V4UNKXUvQ-u8E-h5ML2RN92GzmTX-IZAKHcLMcVWg6yyUs4XgzBeOO4vzIi4SeDVsujntKoqYGAnAtekgYhAiJkLEsATeB1ysR4Zq4PHGbH5kenIxtWRW21AMUtdCCoecXCpKlc00LsyLBLYGeJieohbmHBsJPF8_RnIJJ0Zl42fLbkzoVyBpAg86NK7fJMg1VTpP4PUAz_PJ_76gR_9-l2dwDRFq9nfHe4_hOgvCEiSFbsFmO1_6J3Cl-t6eLOZPo7QROLxopP4EShxkeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Widely+tunable+and+narrow-linewidth+violet+lasers+enabled+by+UV-transparent+materials&rft.jtitle=Nature+communications&rft.au=Franken%2C+C.+A.+A.&rft.au=Hendriks%2C+W.+A.+P.+M.&rft.au=Winkler%2C+L.+V.&rft.au=do+Nascimento+Jr%2C+A.+R.&rft.date=2025-11-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-65211-2&rft.externalDocID=10_1038_s41467_025_65211_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon