Make deep learning algorithms in computational pathology more reproducible and reusable

Greater emphasis on reproducibility and reusability will advance computational pathology quickly and sustainably, ultimately optimizing clinical workflows and benefiting patient health.

Saved in:
Bibliographic Details
Published in:Nature medicine Vol. 28; no. 9; pp. 1744 - 1746
Main Authors: Wagner, Sophia J., Matek, Christian, Shetab Boushehri, Sayedali, Boxberg, Melanie, Lamm, Lorenz, Sadafi, Ario, Waibel, Dominik J. E., Marr, Carsten, Peng, Tingying
Format: Journal Article
Language:English
Published: New York Nature Publishing Group US 01.09.2022
Nature Publishing Group
Subjects:
ISSN:1078-8956, 1546-170X, 1546-170X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Greater emphasis on reproducibility and reusability will advance computational pathology quickly and sustainably, ultimately optimizing clinical workflows and benefiting patient health.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1078-8956
1546-170X
1546-170X
DOI:10.1038/s41591-022-01905-0