Contrastive Multi-View Kernel Learning

Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approach...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 8; pp. 9552 - 9566
Main Authors: Liu, Jiyuan, Liu, Xinwang, Yang, Yuexiang, Liao, Qing, Xia, Yuanqing
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq1-3253211.gif"/> </inline-formula>-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning.
AbstractList Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq1-3253211.gif"/> </inline-formula>-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning.
Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel k-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning.Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel k-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning.
Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel k-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning.
Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel — a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel [Formula Omitted]-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning.
Author Xia, Yuanqing
Liu, Jiyuan
Liao, Qing
Yang, Yuexiang
Liu, Xinwang
Author_xml – sequence: 1
  givenname: Jiyuan
  orcidid: 0000-0001-5702-4941
  surname: Liu
  fullname: Liu, Jiyuan
  email: liujiyuan13@nudt.edu.cn
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, Hunan, China
– sequence: 2
  givenname: Xinwang
  orcidid: 0000-0001-9066-1475
  surname: Liu
  fullname: Liu, Xinwang
  email: xinwangliu@nudt.edu.cn
  organization: College of Computer, National University of Defense Technology, Changsha, Hunan, China
– sequence: 3
  givenname: Yuexiang
  surname: Yang
  fullname: Yang, Yuexiang
  email: yyx@nudt.edu.cn
  organization: College of Computer, National University of Defense Technology, Changsha, Hunan, China
– sequence: 4
  givenname: Qing
  surname: Liao
  fullname: Liao, Qing
  email: liaoqing@hut.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
– sequence: 5
  givenname: Yuanqing
  orcidid: 0000-0002-5977-4911
  surname: Xia
  fullname: Xia, Yuanqing
  email: xia_yuanqing@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37028046$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNUbK3-AREpCOJlazLZj-QoxY9iix6q15DdTiRlu6vJruK_N_1QpAdPc3nemXeeQ9Kp6goJOWF0yBiVV7On6-l4CBT4kEPCgbE90gOW0kiChA7pUZZCJASILjn0fkEpixPKD0iXZxQEjdMeuRjVVeO0b-wHDqZt2djoxeLn4AFdheVggtpVtno9IvtGlx6Pt7NPnm9vZqP7aPJ4Nx5dT6KCJ9BEc5qFJiyPQeoEWJ5LYaTQEBsTByJDhhlCnBep1FpLw2CuBdWGixxMAZL3yeVm75ur31v0jVpaX2BZ6grr1ivIpMjC75QH9HwHXdStq0I7BYKzhAou4kCdbak2X-JcvTm71O5L_RgIAGyAwtXeOzS_CKNqpVmtNauVZrXVHEJiJ1TYRjd27dKW_0dPN1GLiH9u0ZRBKvk3KyeHpQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_neunet_2023_11_066
crossref_primary_10_1109_TGRS_2025_3540269
crossref_primary_10_1016_j_ajhg_2024_06_012
crossref_primary_10_1109_TMM_2024_3397038
crossref_primary_10_1109_TPAMI_2025_3526790
crossref_primary_10_1007_s10044_025_01517_7
crossref_primary_10_1038_s41598_025_01873_8
crossref_primary_10_1109_TPAMI_2025_3566169
crossref_primary_10_1109_TFUZZ_2025_3546802
crossref_primary_10_1007_s10462_024_10990_1
crossref_primary_10_1016_j_inffus_2023_101914
crossref_primary_10_1109_TCYB_2025_3557917
crossref_primary_10_3390_rs17183217
crossref_primary_10_1109_TIP_2024_3480701
crossref_primary_10_1109_TIP_2024_3444269
crossref_primary_10_1109_TETCI_2024_3353576
crossref_primary_10_1016_j_ins_2024_120625
crossref_primary_10_1109_TPAMI_2025_3587216
crossref_primary_10_1016_j_inffus_2023_102068
crossref_primary_10_1109_TIP_2024_3416873
crossref_primary_10_1016_j_dsp_2024_104713
crossref_primary_10_1016_j_eswa_2025_129648
crossref_primary_10_1016_j_neucom_2025_131487
crossref_primary_10_1007_s11063_025_11781_7
crossref_primary_10_1016_j_patcog_2025_111399
crossref_primary_10_1109_TCSVT_2024_3516760
crossref_primary_10_1109_TKDE_2024_3443534
crossref_primary_10_1109_TNNLS_2023_3304626
crossref_primary_10_1109_TNNLS_2024_3392484
crossref_primary_10_1016_j_aej_2025_01_089
crossref_primary_10_1016_j_inffus_2025_103151
crossref_primary_10_1109_TPAMI_2025_3582689
crossref_primary_10_1016_j_neucom_2025_130092
crossref_primary_10_1016_j_neunet_2024_106602
crossref_primary_10_1109_TKDE_2025_3592126
crossref_primary_10_1016_j_neucom_2025_130849
crossref_primary_10_1109_TNNLS_2024_3489585
crossref_primary_10_1109_TKDE_2023_3340743
crossref_primary_10_1109_TFUZZ_2023_3335361
crossref_primary_10_1109_TNNLS_2024_3424464
crossref_primary_10_1016_j_patcog_2025_111495
crossref_primary_10_1109_TNNLS_2024_3354731
crossref_primary_10_1007_s40747_025_01982_x
Cites_doi 10.1109/tip.2020.3011846
10.1007/978-3-030-58621-8_45
10.1145/1646396.1646452
10.1007/978-3-642-15883-4_5
10.1109/tkde.2019.2903810
10.1109/icdm.2012.93
10.1109/tcyb.2020.3000947
10.1016/j.neunet.2020.10.014
10.7551/mitpress/3206.001.0001
10.1145/1991996.1992025
10.1080/01431161.2019.1601285
10.1109/tnnls.2018.2851444
10.24963/ijcai.2019/524
10.1109/tpami.2018.2877660
10.1017/CBO9781139176224.010
10.1109/tpami.2019.2892416
10.1007/978-3-031-19809-0_38
10.1145/1143844.1143892
10.1109/cvpr.2009.5206594
10.1007/11776420_14
10.1145/3474085.3475458
10.1109/tfuzz.2011.2170175
10.1007/s11590-017-1170-5
10.1109/tsmcb.2011.2124455
10.1145/1571941.1572103
10.1007/978-3-030-11018-5_47
10.1109/tkde.2020.3014104
10.1609/aaai.v35i10.17051
10.1109/tpami.2005.181
10.1109/tnnls.2020.2991366
10.1007/s10994-013-5377-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3253211
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 9566
ExternalDocumentID 37028046
10_1109_TPAMI_2023_3253211
10061269
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Education Ministry-China Mobile Research Funding
  grantid: MCM20170404
– fundername: National Key R&D Program of China
  grantid: 2020AAA0107100
– fundername: National Natural Science Foundation of China
  grantid: 61922088; 61976196; 62276271
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c352t-d073251b429a521bb98f98a24ff4c357e1e7e24bc69aaa9f12da80af38b2fc293
IEDL.DBID RIE
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022958600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 05:49:24 EDT 2025
Sun Jun 29 12:35:08 EDT 2025
Mon Jul 21 05:27:55 EDT 2025
Sat Nov 29 02:58:23 EST 2025
Tue Nov 18 22:30:36 EST 2025
Wed Aug 27 02:25:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-d073251b429a521bb98f98a24ff4c357e1e7e24bc69aaa9f12da80af38b2fc293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5977-4911
0000-0001-5702-4941
0000-0001-9066-1475
PMID 37028046
PQID 2831508384
PQPubID 85458
PageCount 15
ParticipantIDs crossref_primary_10_1109_TPAMI_2023_3253211
proquest_miscellaneous_2798710903
ieee_primary_10061269
proquest_journals_2831508384
pubmed_primary_37028046
crossref_citationtrail_10_1109_TPAMI_2023_3253211
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref10
ref17
ref16
Li (ref30) 2021
ref45
ref47
ref42
ref41
ref44
ref43
Sonnenburg (ref11) 2006; 7
ref8
ref7
Lin (ref29) 2021
Du (ref50) 2015
ref40
Oglic (ref48) 2017; 70
ref34
ref37
Chai (ref4) 2021
Leslie (ref5) 2002
ref31
ref33
Liu (ref15) 2016
Liu (ref51) 2017
ref2
ref1
ref39
Zhou (ref18) 2015
ref38
Blei (ref46) 2003; 3
Chen (ref28) 2020; 119
Kumar (ref19) 2011
Xu (ref35) 2021
ref24
ref23
Wang (ref3) 2018
ref26
ref25
ref20
ref22
ref21
Cai (ref36) 2013
Han (ref9) 2021
ref27
Kingma (ref49) 2015
Khosla (ref32) 2020
Schölkopf (ref6) 2002
KloftRückert (ref14) 2010; 6322
References_xml – ident: ref2
  doi: 10.1109/tip.2020.3011846
– start-page: 8547
  volume-title: Proc. 31st AAAI Conf. Artif. Intell., 33rd Conf. Innov. Appl. Artif. Intell., 11th Symp. Educ. Adv. Artif. Intell.
  year: 2021
  ident: ref30
  article-title: Contrastive clustering
– ident: ref34
  doi: 10.1007/978-3-030-58621-8_45
– ident: ref44
  doi: 10.1145/1646396.1646452
– start-page: 566
  volume-title: Proc. 7th Pacific Symp. Biocomputing
  year: 2002
  ident: ref5
  article-title: The spectrum kernel: A string kernel for SVM protein classification
– volume: 6322
  start-page: 66
  volume-title: Proc. Knowl. Discov. Databases Eur. Conf. Mach. Learn.
  year: 2010
  ident: ref14
  article-title: A unifying view of multiple kernel learning
  doi: 10.1007/978-3-642-15883-4_5
– ident: ref39
  doi: 10.1109/tkde.2019.2903810
– volume: 7
  start-page: 1531
  volume-title: J. Mach. Learn. Res.
  year: 2006
  ident: ref11
  article-title: Large scale multiple kernel learning
– start-page: 11174
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit
  year: 2021
  ident: ref29
  article-title: COMPLETER: Incomplete multi-view clustering via contrastive prediction
– ident: ref41
  doi: 10.1109/icdm.2012.93
– start-page: 1248
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2018
  ident: ref3
  article-title: Multi-scale location-aware kernel representation for object detection
– start-page: 16000
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2021
  ident: ref4
  article-title: To the point: Efficient 3D object detection in the range image with graph convolution kernels
– ident: ref22
  doi: 10.1109/tcyb.2020.3000947
– volume: 119
  start-page: 1597
  volume-title: Proc. 37th Int. Conf. Mach. Learn.
  year: 2020
  ident: ref28
  article-title: A simple framework for contrastive learning of visual representations
– ident: ref20
  doi: 10.1016/j.neunet.2020.10.014
– ident: ref7
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref43
  doi: 10.1145/1991996.1992025
– ident: ref47
  doi: 10.1080/01431161.2019.1601285
– ident: ref38
  doi: 10.1109/tnnls.2018.2851444
– volume-title: Proc. 9th Int. Conf. Learn. Representations
  year: 2021
  ident: ref9
  article-title: Trusted multi-view classification
– ident: ref24
  doi: 10.24963/ijcai.2019/524
– start-page: 2598
  volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell.
  year: 2013
  ident: ref36
  article-title: Multi-view K-means clustering on Big Data
– ident: ref10
  doi: 10.1109/tpami.2018.2877660
– ident: ref8
  doi: 10.1017/CBO9781139176224.010
– volume: 70
  start-page: 2652
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  year: 2017
  ident: ref48
  article-title: Nyström method with kernel K-means samples as landmarks
– ident: ref12
  doi: 10.1109/tpami.2019.2892416
– ident: ref33
  doi: 10.1007/978-3-031-19809-0_38
– start-page: 1888
  volume-title: Proc. 13th AAAI Conf. Artif. Intell.
  year: 2016
  ident: ref15
  article-title: Multiple kernel K-means clustering with matrix-induced regularization
– ident: ref40
  doi: 10.1145/1143844.1143892
– ident: ref42
  doi: 10.1109/cvpr.2009.5206594
– ident: ref26
  doi: 10.1007/11776420_14
– volume-title: Proc. Adv. Neural Inf. Process. Syst. 33: Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref32
  article-title: Supervised contrastive learning
– ident: ref31
  doi: 10.1145/3474085.3475458
– ident: ref13
  doi: 10.1109/tfuzz.2011.2170175
– ident: ref27
  doi: 10.1007/s11590-017-1170-5
– start-page: 3476
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  year: 2015
  ident: ref50
  article-title: Robust multiple kernel K-means using L21-norm
– start-page: 1413
  volume-title: Proc. Adv. Neural Inf. Process. Syst.: 25th Annu. Conf. Neural Inf. Process. Syst.
  year: 2011
  ident: ref19
  article-title: Co-regularized multi-view spectral clustering
– ident: ref37
  doi: 10.1109/tsmcb.2011.2124455
– volume-title: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
  year: 2002
  ident: ref6
– ident: ref23
  doi: 10.1145/1571941.1572103
– volume-title: Proc. 3rd Int. Conf. Learn. Representations
  year: 2015
  ident: ref49
  article-title: Adam: A method for stochastic optimization
– year: 2021
  ident: ref35
  article-title: Contrastive multi-modal clustering
– start-page: 4105
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  year: 2015
  ident: ref18
  article-title: Recovery of corrupted multiple kernels for clustering
– ident: ref21
  doi: 10.1007/978-3-030-11018-5_47
– ident: ref16
  doi: 10.1109/tkde.2020.3014104
– ident: ref25
  doi: 10.1609/aaai.v35i10.17051
– ident: ref1
  doi: 10.1109/tpami.2005.181
– ident: ref17
  doi: 10.1109/tnnls.2020.2991366
– ident: ref45
  doi: 10.1007/s10994-013-5377-0
– start-page: 2266
  volume-title: Proc. 31st AAAI Conf. Artif. Intell.
  year: 2017
  ident: ref51
  article-title: Optimal neighborhood kernel clustering with multiple kernels
– volume: 3
  start-page: 993
  year: 2003
  ident: ref46
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res.
SSID ssj0014503
Score 2.6748052
Snippet Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9552
SubjectTerms Algorithms
Cluster Analysis
Clustering
Contrastive learning
Fuses
Hilbert space
Kernel
kernel function
Kernel functions
kernel method
Machine learning
multi-view clustering
multiple kernel clustering
Optimization
Partitioning algorithms
Semantics
Support vector machines
Title Contrastive Multi-View Kernel Learning
URI https://ieeexplore.ieee.org/document/10061269
https://www.ncbi.nlm.nih.gov/pubmed/37028046
https://www.proquest.com/docview/2831508384
https://www.proquest.com/docview/2798710903
Volume 45
WOSCitedRecordID wos001022958600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6siNSD9VE1WiWCeJHUNJtmd48iiqKWHrT0FjbJrBQklbTVv-_sJim9KHhbyCRZ5pH5JrMzA3CRsYAxxSKPBci9ULHUU1xKClVoafA-2u78o2c-GIjxWA6rYnVbC4OI9vAZds3S5vKzabowv8rIwo1DjmQDGpxHZbHWMmUQ9u0YZIIwZOIUR9QVMr68fh3evDx2zaDwLgv6jGKeJmwybrKKBviuOCQ7YeV3sGmdzn3rn9vdge0KXbo3pTrswhrme9CqJze4lSHvwdZKG8J9uDQtqgo1M18-11bkeqMJfrtPWOT44VYtWN_b8HZ_93r74FXzE7yUYNXcy8h8Cb4k5HIUeekkkUJLoYJQ65AoOPaQYxAmaSSVUlL3gkwJX2kmkkCnhAMOYD2f5ngErgzTgGmOft_XFBFGKkOmfKYJjQihUTnQq5kYp1VzcTPj4iO2QYYvYyuD2MggrmTgwNXyns-ytcaf1G3D4RXKkrkOdGphxZX5zWLCTLbPvQgdOF9eJsMx2RCV43RBNFwKcxDVZw4clkJePrzWjeNfXnoCTbO38iBgB9bnxQJPYSP9mk9mxRlp51icWe38Aabv2qY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB584ePg-1FdtYJ4ka7dJLtNjosoyj7wsIq3krYTEaQr-9C_7yRtl70oeAt02oZMpvNNJ_MNwGXGGeeatwLOMAqE5mmgI6UoVKGhxfvo2PlfulG_L19f1VNZrO5qYRDRHT7Duh26XH42TKf2VxlZuHXILbUIy00hWFiUa82SBqLpGiETiCEjp0iiqpEJ1c3gqd17rNtW4XXOmpyinnVY5ZHNK1roO-eSXI-V3-Gmczv3W_-c8DZslvjSbxcbYgcWMN-Frap3g1-a8i5szBER7sGVJaka6bH99vmuJjd4ecdvv4OjHD_8koT1bR-e7-8Gtw9B2UEhSAlYTYKMDJgATEJOR5OfThIljZKaCWMESUTYwAiZSNKW0lor02CZlqE2XCbMpIQEDmApH-Z4BL4SKeMmwrAZGooJWzpDrkNuCI9IaVB70KgWMU5LenHb5eIjdmFGqGKng9jqIC514MH17J7PglzjT-l9u8JzksXielCrlBWXBjiOCTU5pnspPLiYXSbTsfkQneNwSjKRkvYoasg9OCyUPHt4tTeOf3npOaw9DHrduPvY75zAup1ncSywBkuT0RRPYSX9mryPR2duj_4ACpfdBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrastive+Multi-View+Kernel+Learning&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Jiyuan&rft.au=Liu%2C+Xinwang&rft.au=Yang%2C+Yuexiang&rft.au=Liao%2C+Qing&rft.date=2023-08-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=45&rft.issue=8&rft.spage=9552&rft.epage=9566&rft_id=info:doi/10.1109%2FTPAMI.2023.3253211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2023_3253211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon