On the Convergence of an Efficient Algorithm for Kullback-Leibler Approximation of Spectral Densities

This paper deals with a method for the approximation of a spectral density function among the solutions of a generalized moment problem à la Byrnes/Georgiou/Lindquist. The approximation is pursued with respect to the Kullback-Leibler pseudo-distance, which gives rise to a convex optimization proble...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 56; číslo 3; s. 506 - 515
Hlavní autoři: Ferrante, Augusto, Ramponi, Federico, Ticozzi, Francesco
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.03.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper deals with a method for the approximation of a spectral density function among the solutions of a generalized moment problem à la Byrnes/Georgiou/Lindquist. The approximation is pursued with respect to the Kullback-Leibler pseudo-distance, which gives rise to a convex optimization problem. After developing the variational analysis, we discuss the properties of an efficient algorithm for the solution of the corresponding dual problem, based on the iteration of a nonlinear map in a bounded subset of the dual space. Our main result is the proof of local convergence of the latter, established as a consequence of the central manifold theorem. Supported by numerical evidence, we conjecture that, in the mentioned bounded set, the convergence is actually global.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2057171