On the Convergence of an Efficient Algorithm for Kullback-Leibler Approximation of Spectral Densities
This paper deals with a method for the approximation of a spectral density function among the solutions of a generalized moment problem à la Byrnes/Georgiou/Lindquist. The approximation is pursued with respect to the Kullback-Leibler pseudo-distance, which gives rise to a convex optimization proble...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on automatic control Jg. 56; H. 3; S. 506 - 515 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.03.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9286, 1558-2523 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper deals with a method for the approximation of a spectral density function among the solutions of a generalized moment problem à la Byrnes/Georgiou/Lindquist. The approximation is pursued with respect to the Kullback-Leibler pseudo-distance, which gives rise to a convex optimization problem. After developing the variational analysis, we discuss the properties of an efficient algorithm for the solution of the corresponding dual problem, based on the iteration of a nonlinear map in a bounded subset of the dual space. Our main result is the proof of local convergence of the latter, established as a consequence of the central manifold theorem. Supported by numerical evidence, we conjecture that, in the mentioned bounded set, the convergence is actually global. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2010.2057171 |