A complete characterization of disjunctive conic cuts for mixed integer second order cone optimization
We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization (MISOCO) problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far been restricted to the case in whic...
Uložené v:
| Vydané v: | Discrete optimization Ročník 24; s. 3 - 31 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.05.2017
|
| Predmet: | |
| ISSN: | 1572-5286, 1873-636X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization (MISOCO) problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far been restricted to the case in which the intersection of the hyperplanes and the feasible set is bounded. Using a similar technique, we show that one can extend our previous results to the case in which that intersection is unbounded. We provide a complete characterization in closed form of the conic inequalities required to describe the convex hull when the hyperplanes defining the disjunction are parallel. |
|---|---|
| ISSN: | 1572-5286 1873-636X |
| DOI: | 10.1016/j.disopt.2016.10.001 |