Learning control for transmission and navigation with a mobile robot under unknown communication rates

In tasks such as surveying or monitoring remote regions, an autonomous robot must move while transmitting data over a wireless network with unknown, position-dependent transmission rates. For such a robot, this paper considers the problem of transmitting a data buffer in minimum time, while possibly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control engineering practice Jg. 100; S. 104460
Hauptverfasser: Buşoniu, Lucian, Varma, Vineeth S., Lohéac, Jérôme, Codrean, Alexandru, Ştefan, Octavian, Morărescu, Irinel-Constantin, Lasaulce, Samson
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2020
Elsevier
Schlagworte:
ISSN:0967-0661, 1873-6939
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In tasks such as surveying or monitoring remote regions, an autonomous robot must move while transmitting data over a wireless network with unknown, position-dependent transmission rates. For such a robot, this paper considers the problem of transmitting a data buffer in minimum time, while possibly also navigating towards a goal position. Two approaches are proposed, each consisting of a machine-learning component that estimates the rate function from samples; and of an optimal-control component that moves the robot given the current rate function estimate. Simple obstacle avoidance is performed for the case without a goal position. In extensive simulations, these methods achieve competitive performance compared to known-rate and unknown-rate baselines. A real indoor experiment is provided in which a Parrot AR.Drone 2 successfully learns to transmit the buffer.
ISSN:0967-0661
1873-6939
DOI:10.1016/j.conengprac.2020.104460