Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models
Water resources in arid and semi-arid regions are susceptible to alteration in hydro-climatic variables, especially under climate change which makes runoff simulations more challenging. This study aims to simulate input runoff to a dam reservoir in an arid region under changing climatic conditions u...
Saved in:
| Published in: | Water resources management Vol. 36; no. 4; pp. 1191 - 1215 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.03.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-4741, 1573-1650 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Water resources in arid and semi-arid regions are susceptible to alteration in hydro-climatic variables, especially under climate change which makes runoff simulations more challenging. This study aims to simulate input runoff to a dam reservoir in an arid region under changing climatic conditions using three data-mining algorithms, including Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Genetic Expression Programming (GEP), and the conceptual HYMOD model. Three parameters containing precipitation and maximum and minimum temperature were simulated from 30 Coupled Model Intercomparison Project Phase 5 (CMIP5) and Global Climate Models (GCMs) for the future period (2020–2040) under the high-end RCP8.5 scenario. The Long Ashton Research Station Weather Generator (LARS-WG) was selected as a downscaling method. The Gamma and M tests (This is an exam to determine whether an infinite series of functions will converge uniformly and absolutely or not) were applied to detect the best combinations and number of input parameters for the models, respectively. Among 29 defined input parameters for the models, the gamma test identified 11 parameters with the best functionality to simulate runoff. Based on the reliability estimates of model error variance by the M test, the data were partitioned as 75% for learning and the other 25% for test verification. A comparison of the runoff simulations of the models revealed a remarkable performance of the SVM model by 3, 5, and 14% compared to ANNs, GEP, and HYMOD models, respectively. The SVM model forecasted a 25% decrease in the mean runoff input to the dam reservoir for the 2020–2040 period compared to the study period (2000–2019). This result illustrates necessitating the implementation of sustainable adaptation strategies to protect future water resources in the basin. |
|---|---|
| AbstractList | Water resources in arid and semi-arid regions are susceptible to alteration in hydro-climatic variables, especially under climate change which makes runoff simulations more challenging. This study aims to simulate input runoff to a dam reservoir in an arid region under changing climatic conditions using three data-mining algorithms, including Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Genetic Expression Programming (GEP), and the conceptual HYMOD model. Three parameters containing precipitation and maximum and minimum temperature were simulated from 30 Coupled Model Intercomparison Project Phase 5 (CMIP5) and Global Climate Models (GCMs) for the future period (2020–2040) under the high-end RCP8.5 scenario. The Long Ashton Research Station Weather Generator (LARS-WG) was selected as a downscaling method. The Gamma and M tests (This is an exam to determine whether an infinite series of functions will converge uniformly and absolutely or not) were applied to detect the best combinations and number of input parameters for the models, respectively. Among 29 defined input parameters for the models, the gamma test identified 11 parameters with the best functionality to simulate runoff. Based on the reliability estimates of model error variance by the M test, the data were partitioned as 75% for learning and the other 25% for test verification. A comparison of the runoff simulations of the models revealed a remarkable performance of the SVM model by 3, 5, and 14% compared to ANNs, GEP, and HYMOD models, respectively. The SVM model forecasted a 25% decrease in the mean runoff input to the dam reservoir for the 2020–2040 period compared to the study period (2000–2019). This result illustrates necessitating the implementation of sustainable adaptation strategies to protect future water resources in the basin. |
| Author | Tabari, Hossein Yoosefdoost, Icen Mohammadrezapour, Omolbani Khashei-Siuki, Abbas |
| Author_xml | – sequence: 1 givenname: Icen orcidid: 0000-0003-0711-8661 surname: Yoosefdoost fullname: Yoosefdoost, Icen organization: Department of Water Engineering, University of Birjand – sequence: 2 givenname: Abbas orcidid: 0000-0002-2863-8482 surname: Khashei-Siuki fullname: Khashei-Siuki, Abbas email: abbaskhashei@birjand.ac.ir organization: Department of Water Engineering, University of Birjand – sequence: 3 givenname: Hossein orcidid: 0000-0003-2052-4541 surname: Tabari fullname: Tabari, Hossein organization: Department of Civil Engineering, KU Leuven – sequence: 4 givenname: Omolbani orcidid: 0000-0002-3815-6356 surname: Mohammadrezapour fullname: Mohammadrezapour, Omolbani organization: Department of Sciences and Water Engineering, Gorgan University of Agriculture Science and Natural Resources |
| BookMark | eNp9kUFrFTEQx4NU8LX6BTwFvHhZO0k22ay38myt0KKoPYe8bPKakk2eSfbgzY9utk8QeuhpYPj9Zob5n6KTmKJF6C2BDwRgOC-EUDF2QGkHDITsxAu0IXxgHREcTtAGRgpdP_TkFTot5QGgaSNs0J_vS0zO4R9-XoKuPkV8Fyeb8dVSl2zxNvhZ11bvddy3kuLkV6p8xN9sdinPOpq1Px909qXpyeFPuuru1kcf9_gi7FP29X4uWMdpHWDsoS464Ns02VBeo5dOh2Lf_Ktn6O7q8uf2urv5-vnL9uKmM4zT2nExAZFgxnHi1Mlh1MOOajC6t1pzyQF2xDlmTL9rDbdjvKeWiYkJM1I5SnaG3h_nHnL6tdhS1eyLsSHoaNNSFBW9lJwJRhr67gn6kJYc23UrBVwQIkWj6JEyOZWSrVOH3H6VfysCag1FHUNRLRT1GIpaJflEMr4-vr1m7cPzKjuqpe1pWeT_Vz1j_QXojaQk |
| CitedBy_id | crossref_primary_10_1111_jac_70041 crossref_primary_10_1155_2022_6577274 crossref_primary_10_3390_agronomy12091997 crossref_primary_10_1007_s00382_023_06893_6 crossref_primary_10_1007_s12517_023_11352_x crossref_primary_10_1016_j_egyr_2023_12_031 crossref_primary_10_1007_s11269_022_03254_6 crossref_primary_10_1016_j_jhydrol_2024_131834 crossref_primary_10_1155_2022_2166350 crossref_primary_10_1061_JHYEFF_HEENG_5826 crossref_primary_10_1111_jfr3_13012 crossref_primary_10_5194_hess_29_291_2025 crossref_primary_10_1007_s10668_023_03299_6 crossref_primary_10_2166_wcc_2023_469 crossref_primary_10_3390_w16071064 crossref_primary_10_3390_su141811149 crossref_primary_10_1007_s11269_022_03387_8 crossref_primary_10_2166_wcc_2025_499 crossref_primary_10_2166_wcc_2023_374 crossref_primary_10_3390_atmos14081235 crossref_primary_10_1007_s11269_022_03170_9 |
| Cites_doi | 10.1007/bf00994018 10.1061/(ASCE)CO.1943-7862.0001183 10.1007/S11269-020-02701-6 10.1007/S40710-021-00543-X 10.1016/j.jhydrol.2019.124223 10.1007/s11356-018-3026-7 10.1016/j.envsci.2017.10.008 10.1007/s40710-021-00512-4 10.1007/S11269-021-02911-6 10.12691/ajwr-5-4-1 10.1038/nclimate2893 10.1002/2018EF000813 10.3390/w13152049 10.1016/J.JHYDROL.2009.03.034 10.12691/ajcea-6-3-1 10.1007/s11269-021-02944-x 10.1201/9780429246593 10.1007/s00477-014-0954-8 10.12691/env-6-1-5 10.1016/j.eswa.2008.09.053 10.1007/S11269-021-02786-7 10.1007/s11629-014-3020-6 10.1007/s40710-020-00480-1 10.1016/j.jclepro.2020.125266 10.1016/j.scitotenv.2020.137688 10.1007/s11356-019-05553-9 10.1126/sciadv.abf8021 10.3390/w11040720 10.1002/hyp.6084 10.1061/(ASCE)HE.1943-5584.0001866 10.5194/piahs-368-180-2015 10.1016/j.jhydrol.2008.01.023 10.1007/s00500-021-05721-5 10.1007/s13762-013-0209-0 10.1038/s41598-017-18521-5 10.1016/j.jhydrol.2015.04.072 10.1007/S11269-021-02966-5 10.1016/j.gsf.2020.09.006 10.1038/s41598-020-70816-2 10.1007/S11269-020-02729-8 10.1016/j.jhydrol.2020.125249 10.1016/0169-2070(94)90045-0 10.1007/S11269-021-02920-5 10.1007/s00477-016-1355-y 10.1016/j.jhydrol.2012.04.007 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-022-03068-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) SciTech Premium Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Science Database ProQuest Biological Science Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 1215 |
| ExternalDocumentID | 10_1007_s11269_022_03068_6 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c352t-56d0180c99d52f879a7b2a0ca4eaa58500b1ff3cc4beaafb3542e36d36c928983 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764506200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-4741 |
| IngestDate | Fri Sep 05 08:06:02 EDT 2025 Wed Nov 05 02:16:02 EST 2025 Tue Nov 18 21:22:03 EST 2025 Sat Nov 29 02:11:54 EST 2025 Fri Feb 21 02:47:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Artificial intelligence techniques Climate change LARS Rainfall-runoff forecasting model Gamma and M tests |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-56d0180c99d52f879a7b2a0ca4eaa58500b1ff3cc4beaafb3542e36d36c928983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0711-8661 0000-0003-2052-4541 0000-0002-2863-8482 0000-0002-3815-6356 |
| PQID | 2640561186 |
| PQPubID | 54174 |
| PageCount | 25 |
| ParticipantIDs | proquest_miscellaneous_2648853631 proquest_journals_2640561186 crossref_primary_10_1007_s11269_022_03068_6 crossref_citationtrail_10_1007_s11269_022_03068_6 springer_journals_10_1007_s11269_022_03068_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20220300 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2022 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | TayfurGEmpirical, numerical, and soft modelling approaches for non-cohesive sediment transportEnviron Process20218375810.1007/s40710-020-00480-1 WangWDuYChauKAn ensemble hybrid forecasting model for annual runoff based on sample entropy, secondary decomposition, and long short-term memory neural networkWater Resour Manage2021202113210.1007/S11269-021-02920-5 YoosefDoost A, YoosefDoost I, Asghari H, Sadegh Sadeghian MS (2018b) Comparison of HadCM3, CSIRO Mk3 and GFDL CM2.1 in prediction the climate change in Taleghan River Basin. Am J Civil Eng Architect 6:93–100. https://doi.org/10.12691/ajcea-6-3-1 Yousefi MalekshahMGhazaviRSadatinejadSJEvaluating the effect of climate changes on runoff and maximum flood discharge in the dry area (Case Study : Tehran-Karaj Basin)Ecopersia20197211221In Farsi FanYRHuangWHuangGHA PCM-based stochastic hydrological model for uncertainty quantification in watershed systemsStoch Env Res Risk Assess20152991592710.1007/s00477-014-0954-8 HosseinzadehtalaeiPTabariHWillemsPSatellite-based data driven quantification of pluvial floods over Europe under future climatic and socioeconomic changesSci Total Environ202072110.1016/j.scitotenv.2020.137688 Kharin V, Flato GM, Zhang X et al (2018) Risks from climate extremes change differently from 1.5°C to 2.0°C depending on rarity. Earth’s Future 6:704–715. https://doi.org/10.1002/2018EF000813 TabariHClimate change impact on flood and extreme precipitation increases with water availabilitySci Rep2020101376810.1038/s41598-020-70816-2 Islam ARMT, Talukdar S, Mahato S et al (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12:101075 RoyDKLong short-term memory networks to predict one-step ahead reference evapotranspiration in a subtropical climatic zoneEnviron Process2021891194110.1007/s40710-021-00512-4 BehzadMAsghariKEaziMPalhangMGeneralization performance of support vector machines and neural networks in runoff modelingExpert Syst Appl2009367624762910.1016/j.eswa.2008.09.053 KundzewiczZWKrysanovaVBenestadREUncertainty in climate change impacts on water resourcesEnviron Sci Policy2018791810.1016/j.envsci.2017.10.008 MengEHuangSHuangQA hybrid VMD-SVM model for practical streamflow prediction using an innovative input selection frameworkWater Resour Manage2021351321133710.1007/S11269-021-02786-7 CortesCVapnikVSupport-vector networksMach Learn19952027329710.1007/bf00994018 RavindranSMBhaskaranSKMAmbatSKNA deep neural network architecture to model reference evapotranspiration using a single input meteorological parameterEnviron Process202181567159910.1007/S40710-021-00543-X MakkeasornAChangNBZhouXShort-term streamflow forecasting with global climate change implications - a comparative study between genetic programming and neural network modelsJ Hydrol200835233635410.1016/j.jhydrol.2008.01.023 DarabiHMohamadiSKarimidastenaeiZPrediction of daily suspended sediment load (SSL) using new optimization algorithms and soft computing modelsSoft Comput2021257609762610.1007/s00500-021-05721-5 ShoaibMShamseldinAYMelvilleBWKhanMMRunoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approachJ Hydrol201552732634410.1016/j.jhydrol.2015.04.072 SinghVKKumarDKashyapPSModelling of soil permeability using different data driven algorithms based on physical properties of soilJ Hydrol202058010.1016/j.jhydrol.2019.124223 Vijay S, Kamaraj K (2021) Prediction of water quality index in drinking water distribution system using activation functions based ann. Water Resour Manage 35:2, 35:535–553. https://doi.org/10.1007/S11269-020-02729-8 GhaithMSiamALiZEl-DakhakhniWHybrid hydrological data-driven approach for daily streamflow forecastingJ Hydrol Eng2020250401906310.1061/(ASCE)HE.1943-5584.0001866 RezaeianzadehMSteinATabariHAssessment of a conceptual hydrological model and artificial neural networks for daily outflows forecastingInt J Environ Sci Technol2013101181119210.1007/s13762-013-0209-0 Zhang W et al (2021) Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci Adv 7(31):eabf8021 WangYTabariHXuYUnraveling the role of human activities and climate variability in water level changes in the Taihu plain using artificial neural networkWater20191172010.3390/w11040720 Winsemius HC, Aerts JCJH, van Beek LPH et al (2015) Global drivers of future river flood risk. Nat Clim Change 64, 6:381–385. https://doi.org/10.1038/nclimate2893 BayramSAl-JibouriSEfficacy of estimation methods in forecasting building projects’ costsJ Constr Eng Manag201610.1061/(ASCE)CO.1943-7862.0001183 Hosseinzadehtalaei P, Tabari H, Willems P (2020a) Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. J Hydrol 590:125249 TabariHKisiOEzaniATalaeePHSVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environmentJ Hydrol2012444788910.1016/j.jhydrol.2012.04.007 ChoubinBKhalighi-SigaroodiSMalekianADrought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approachJ Mt Sci2014111593160510.1007/s11629-014-3020-6 Mohanta A, Pradhan A, Mallick M, Patra KC (2021) Assessment of shear stress distribution in meandering compound channels with differential roughness through various artificial intelligence approach. Water Resour Manage 35:13, 35:4535–4559. https://doi.org/10.1007/S11269-021-02966-5 TabariHWillemsPSeasonally varying footprint of climate change on precipitation in the Middle EastSci Rep2018821110.1038/s41598-017-18521-5 EfronBTibshiraniRJAn introduction to the bootstrap1994CRC Press10.1201/9780429246593 MohammadiAAYousefiMSoltaniJUsing the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sedimentsEnviron Sci Pollut Res201825303153032410.1007/s11356-018-3026-7 QuanZTengJSunWEvaluation of the HYMOD model for rainfall–runoff simulation using the GLUE methodProc Int Assoc Hydrol Sci201536818018510.5194/piahs-368-180-2015 Jafarzadeh A, Pourreza-Bilondi M, Siuki AK, Moghadam JR (2021) Examination of various feature selection approaches for daily precipitation downscaling in different climates. Water Resour Manage 35:2, 35:407–427. https://doi.org/10.1007/S11269-020-02701-6 Amiri-Ardakani Y, Najafzadeh M (2021) Pipe break rate assessment while considering physical and operational factors: a methodology based on global positioning system and data-driven techniques. Water Resour Manage 35:11, 35:3703–3720. https://doi.org/10.1007/S11269-021-02911-6 Dawood T, Elwakil E, Novoa HM, Delgado JFG (2021) Toward urban sustainability and clean potable water: Prediction of water quality via artificial neural networks. J Clean Prod 291:125266 HillTMarquezLO’ConnorMRemusWArtificial neural network models for forecasting and decision makingInt J Forecast19941051510.1016/0169-2070(94)90045-0 YoosefDoost A, Sadeghian MS, NodeFarahani M, Rasekhi A (2017) Comparison between performance of statistical and Low Cost ARIMA Model with GFDL, CM2. 1 and CGM 3 atmosphere-ocean general circulation models in assessment of the effects of climate change on temperature and precipitation in Taleghan Basin. Am J Water Resour 5:92–99. https://doi.org/10.12691/ajwr-5-4-1 YoosefDoost A, Asghari H, Abunuri R, Sadeghian MS (2018a) Comparison of CGCM3, CSIRO MK3 and HADCM3 Models in estimating the effects of climate change on temperature and precipitation in Taleghan Basin. Am J Environ Protect 6:28–34. https://doi.org/10.12691/env-6-1-5 KarandishFMousaviSSTabariHClimate change impact on precipitation and cardinal temperatures in different climatic zones in Iran: Analyzing the probable effects on cereal water-use efficiencyStoch Env Res Risk Assess2017312121214610.1007/s00477-016-1355-y Khan MS, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statistical downscaling methods using Canadian Global Climate Model predictors. Hydrol Process 20:3085–3104. https://doi.org/10.1002/hyp.6084 LoveridgeMRahmanAEffects of probability-distributed losses on flood estimates using event-based rainfall-runoff modelsWater202113204910.3390/w13152049 Chakrabortty R, Pal SC, Janizadeh S et al (2021) Impact of climate change on future flood susceptibility: an evaluation based on deep learning algorithms and GCM model. Water Resour Manage 35:12, 35:4251–4274 MalikAKumarAKisiOShiriJEvaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modelingEnviron Sci Pollut Res201926226702268710.1007/s11356-019-05553-9 RemesanRShamimMAHanDMathewJRunoff prediction using an integrated hybrid modelling schemeJ Hydrol2009372486010.1016/J.JHYDROL.2009.03.034 G Tayfur (3068_CR37) 2021; 8 W Wang (3068_CR39) 2021; 2021 3068_CR46 3068_CR26 M Loveridge (3068_CR21) 2021; 13 A Malik (3068_CR23) 2019; 26 H Darabi (3068_CR7) 2021; 25 B Efron (3068_CR9) 1994 Z Quan (3068_CR27) 2015; 368 SM Ravindran (3068_CR28) 2021; 8 P Hosseinzadehtalaei (3068_CR14) 2020; 721 A Makkeasorn (3068_CR22) 2008; 352 T Hill (3068_CR12) 1994; 10 B Choubin (3068_CR5) 2014; 11 VK Singh (3068_CR33) 2020; 580 3068_CR41 3068_CR42 3068_CR43 H Tabari (3068_CR35) 2012; 444 H Tabari (3068_CR36) 2018; 8 3068_CR44 YR Fan (3068_CR10) 2015; 29 3068_CR16 3068_CR38 M Behzad (3068_CR3) 2009; 36 3068_CR18 3068_CR19 S Bayram (3068_CR2) 2016 3068_CR13 3068_CR8 3068_CR15 ZW Kundzewicz (3068_CR20) 2018; 79 R Remesan (3068_CR29) 2009; 372 3068_CR4 DK Roy (3068_CR31) 2021; 8 3068_CR1 C Cortes (3068_CR6) 1995; 20 M Ghaith (3068_CR11) 2020; 25 F Karandish (3068_CR17) 2017; 31 M Yousefi Malekshah (3068_CR45) 2019; 7 AA Mohammadi (3068_CR25) 2018; 25 M Rezaeianzadeh (3068_CR30) 2013; 10 M Shoaib (3068_CR32) 2015; 527 H Tabari (3068_CR34) 2020; 10 E Meng (3068_CR24) 2021; 35 Y Wang (3068_CR40) 2019; 11 |
| References_xml | – reference: BehzadMAsghariKEaziMPalhangMGeneralization performance of support vector machines and neural networks in runoff modelingExpert Syst Appl2009367624762910.1016/j.eswa.2008.09.053 – reference: WangYTabariHXuYUnraveling the role of human activities and climate variability in water level changes in the Taihu plain using artificial neural networkWater20191172010.3390/w11040720 – reference: Amiri-Ardakani Y, Najafzadeh M (2021) Pipe break rate assessment while considering physical and operational factors: a methodology based on global positioning system and data-driven techniques. Water Resour Manage 35:11, 35:3703–3720. https://doi.org/10.1007/S11269-021-02911-6 – reference: HillTMarquezLO’ConnorMRemusWArtificial neural network models for forecasting and decision makingInt J Forecast19941051510.1016/0169-2070(94)90045-0 – reference: LoveridgeMRahmanAEffects of probability-distributed losses on flood estimates using event-based rainfall-runoff modelsWater202113204910.3390/w13152049 – reference: MohammadiAAYousefiMSoltaniJUsing the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sedimentsEnviron Sci Pollut Res201825303153032410.1007/s11356-018-3026-7 – reference: HosseinzadehtalaeiPTabariHWillemsPSatellite-based data driven quantification of pluvial floods over Europe under future climatic and socioeconomic changesSci Total Environ202072110.1016/j.scitotenv.2020.137688 – reference: RezaeianzadehMSteinATabariHAssessment of a conceptual hydrological model and artificial neural networks for daily outflows forecastingInt J Environ Sci Technol2013101181119210.1007/s13762-013-0209-0 – reference: FanYRHuangWHuangGHA PCM-based stochastic hydrological model for uncertainty quantification in watershed systemsStoch Env Res Risk Assess20152991592710.1007/s00477-014-0954-8 – reference: Yousefi MalekshahMGhazaviRSadatinejadSJEvaluating the effect of climate changes on runoff and maximum flood discharge in the dry area (Case Study : Tehran-Karaj Basin)Ecopersia20197211221In Farsi – reference: Mohanta A, Pradhan A, Mallick M, Patra KC (2021) Assessment of shear stress distribution in meandering compound channels with differential roughness through various artificial intelligence approach. Water Resour Manage 35:13, 35:4535–4559. https://doi.org/10.1007/S11269-021-02966-5 – reference: TabariHKisiOEzaniATalaeePHSVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environmentJ Hydrol2012444788910.1016/j.jhydrol.2012.04.007 – reference: YoosefDoost A, Sadeghian MS, NodeFarahani M, Rasekhi A (2017) Comparison between performance of statistical and Low Cost ARIMA Model with GFDL, CM2. 1 and CGM 3 atmosphere-ocean general circulation models in assessment of the effects of climate change on temperature and precipitation in Taleghan Basin. Am J Water Resour 5:92–99. https://doi.org/10.12691/ajwr-5-4-1 – reference: EfronBTibshiraniRJAn introduction to the bootstrap1994CRC Press10.1201/9780429246593 – reference: Jafarzadeh A, Pourreza-Bilondi M, Siuki AK, Moghadam JR (2021) Examination of various feature selection approaches for daily precipitation downscaling in different climates. Water Resour Manage 35:2, 35:407–427. https://doi.org/10.1007/S11269-020-02701-6 – reference: Winsemius HC, Aerts JCJH, van Beek LPH et al (2015) Global drivers of future river flood risk. Nat Clim Change 64, 6:381–385. https://doi.org/10.1038/nclimate2893 – reference: Khan MS, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statistical downscaling methods using Canadian Global Climate Model predictors. Hydrol Process 20:3085–3104. https://doi.org/10.1002/hyp.6084 – reference: QuanZTengJSunWEvaluation of the HYMOD model for rainfall–runoff simulation using the GLUE methodProc Int Assoc Hydrol Sci201536818018510.5194/piahs-368-180-2015 – reference: Vijay S, Kamaraj K (2021) Prediction of water quality index in drinking water distribution system using activation functions based ann. Water Resour Manage 35:2, 35:535–553. https://doi.org/10.1007/S11269-020-02729-8 – reference: ChoubinBKhalighi-SigaroodiSMalekianADrought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approachJ Mt Sci2014111593160510.1007/s11629-014-3020-6 – reference: YoosefDoost A, Asghari H, Abunuri R, Sadeghian MS (2018a) Comparison of CGCM3, CSIRO MK3 and HADCM3 Models in estimating the effects of climate change on temperature and precipitation in Taleghan Basin. Am J Environ Protect 6:28–34. https://doi.org/10.12691/env-6-1-5 – reference: MengEHuangSHuangQA hybrid VMD-SVM model for practical streamflow prediction using an innovative input selection frameworkWater Resour Manage2021351321133710.1007/S11269-021-02786-7 – reference: Hosseinzadehtalaei P, Tabari H, Willems P (2020a) Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. J Hydrol 590:125249 – reference: ShoaibMShamseldinAYMelvilleBWKhanMMRunoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approachJ Hydrol201552732634410.1016/j.jhydrol.2015.04.072 – reference: DarabiHMohamadiSKarimidastenaeiZPrediction of daily suspended sediment load (SSL) using new optimization algorithms and soft computing modelsSoft Comput2021257609762610.1007/s00500-021-05721-5 – reference: Islam ARMT, Talukdar S, Mahato S et al (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12:101075 – reference: KarandishFMousaviSSTabariHClimate change impact on precipitation and cardinal temperatures in different climatic zones in Iran: Analyzing the probable effects on cereal water-use efficiencyStoch Env Res Risk Assess2017312121214610.1007/s00477-016-1355-y – reference: YoosefDoost A, YoosefDoost I, Asghari H, Sadegh Sadeghian MS (2018b) Comparison of HadCM3, CSIRO Mk3 and GFDL CM2.1 in prediction the climate change in Taleghan River Basin. Am J Civil Eng Architect 6:93–100. https://doi.org/10.12691/ajcea-6-3-1 – reference: Zhang W et al (2021) Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci Adv 7(31):eabf8021 – reference: MakkeasornAChangNBZhouXShort-term streamflow forecasting with global climate change implications - a comparative study between genetic programming and neural network modelsJ Hydrol200835233635410.1016/j.jhydrol.2008.01.023 – reference: MalikAKumarAKisiOShiriJEvaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modelingEnviron Sci Pollut Res201926226702268710.1007/s11356-019-05553-9 – reference: RavindranSMBhaskaranSKMAmbatSKNA deep neural network architecture to model reference evapotranspiration using a single input meteorological parameterEnviron Process202181567159910.1007/S40710-021-00543-X – reference: RoyDKLong short-term memory networks to predict one-step ahead reference evapotranspiration in a subtropical climatic zoneEnviron Process2021891194110.1007/s40710-021-00512-4 – reference: WangWDuYChauKAn ensemble hybrid forecasting model for annual runoff based on sample entropy, secondary decomposition, and long short-term memory neural networkWater Resour Manage2021202113210.1007/S11269-021-02920-5 – reference: KundzewiczZWKrysanovaVBenestadREUncertainty in climate change impacts on water resourcesEnviron Sci Policy2018791810.1016/j.envsci.2017.10.008 – reference: TayfurGEmpirical, numerical, and soft modelling approaches for non-cohesive sediment transportEnviron Process20218375810.1007/s40710-020-00480-1 – reference: TabariHClimate change impact on flood and extreme precipitation increases with water availabilitySci Rep2020101376810.1038/s41598-020-70816-2 – reference: SinghVKKumarDKashyapPSModelling of soil permeability using different data driven algorithms based on physical properties of soilJ Hydrol202058010.1016/j.jhydrol.2019.124223 – reference: GhaithMSiamALiZEl-DakhakhniWHybrid hydrological data-driven approach for daily streamflow forecastingJ Hydrol Eng2020250401906310.1061/(ASCE)HE.1943-5584.0001866 – reference: BayramSAl-JibouriSEfficacy of estimation methods in forecasting building projects’ costsJ Constr Eng Manag201610.1061/(ASCE)CO.1943-7862.0001183 – reference: TabariHWillemsPSeasonally varying footprint of climate change on precipitation in the Middle EastSci Rep2018821110.1038/s41598-017-18521-5 – reference: Dawood T, Elwakil E, Novoa HM, Delgado JFG (2021) Toward urban sustainability and clean potable water: Prediction of water quality via artificial neural networks. J Clean Prod 291:125266 – reference: Chakrabortty R, Pal SC, Janizadeh S et al (2021) Impact of climate change on future flood susceptibility: an evaluation based on deep learning algorithms and GCM model. Water Resour Manage 35:12, 35:4251–4274 – reference: Kharin V, Flato GM, Zhang X et al (2018) Risks from climate extremes change differently from 1.5°C to 2.0°C depending on rarity. Earth’s Future 6:704–715. https://doi.org/10.1002/2018EF000813 – reference: RemesanRShamimMAHanDMathewJRunoff prediction using an integrated hybrid modelling schemeJ Hydrol2009372486010.1016/J.JHYDROL.2009.03.034 – reference: CortesCVapnikVSupport-vector networksMach Learn19952027329710.1007/bf00994018 – volume: 20 start-page: 273 year: 1995 ident: 3068_CR6 publication-title: Mach Learn doi: 10.1007/bf00994018 – year: 2016 ident: 3068_CR2 publication-title: J Constr Eng Manag doi: 10.1061/(ASCE)CO.1943-7862.0001183 – ident: 3068_CR16 doi: 10.1007/S11269-020-02701-6 – volume: 8 start-page: 1567 year: 2021 ident: 3068_CR28 publication-title: Environ Process doi: 10.1007/S40710-021-00543-X – volume: 580 year: 2020 ident: 3068_CR33 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124223 – volume: 25 start-page: 30315 year: 2018 ident: 3068_CR25 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-018-3026-7 – volume: 79 start-page: 1 year: 2018 ident: 3068_CR20 publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2017.10.008 – volume: 8 start-page: 911 year: 2021 ident: 3068_CR31 publication-title: Environ Process doi: 10.1007/s40710-021-00512-4 – ident: 3068_CR1 doi: 10.1007/S11269-021-02911-6 – ident: 3068_CR44 doi: 10.12691/ajwr-5-4-1 – ident: 3068_CR41 doi: 10.1038/nclimate2893 – volume: 7 start-page: 211 year: 2019 ident: 3068_CR45 publication-title: Ecopersia – ident: 3068_CR19 doi: 10.1002/2018EF000813 – volume: 13 start-page: 2049 year: 2021 ident: 3068_CR21 publication-title: Water doi: 10.3390/w13152049 – volume: 372 start-page: 48 year: 2009 ident: 3068_CR29 publication-title: J Hydrol doi: 10.1016/J.JHYDROL.2009.03.034 – ident: 3068_CR43 doi: 10.12691/ajcea-6-3-1 – ident: 3068_CR4 doi: 10.1007/s11269-021-02944-x – volume-title: An introduction to the bootstrap year: 1994 ident: 3068_CR9 doi: 10.1201/9780429246593 – volume: 29 start-page: 915 year: 2015 ident: 3068_CR10 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-014-0954-8 – ident: 3068_CR42 doi: 10.12691/env-6-1-5 – volume: 36 start-page: 7624 year: 2009 ident: 3068_CR3 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.09.053 – volume: 35 start-page: 1321 year: 2021 ident: 3068_CR24 publication-title: Water Resour Manage doi: 10.1007/S11269-021-02786-7 – volume: 11 start-page: 1593 year: 2014 ident: 3068_CR5 publication-title: J Mt Sci doi: 10.1007/s11629-014-3020-6 – volume: 8 start-page: 37 year: 2021 ident: 3068_CR37 publication-title: Environ Process doi: 10.1007/s40710-020-00480-1 – ident: 3068_CR8 doi: 10.1016/j.jclepro.2020.125266 – volume: 721 year: 2020 ident: 3068_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.137688 – volume: 26 start-page: 22670 year: 2019 ident: 3068_CR23 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-05553-9 – ident: 3068_CR46 doi: 10.1126/sciadv.abf8021 – volume: 11 start-page: 720 year: 2019 ident: 3068_CR40 publication-title: Water doi: 10.3390/w11040720 – ident: 3068_CR18 doi: 10.1002/hyp.6084 – volume: 25 start-page: 04019063 year: 2020 ident: 3068_CR11 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0001866 – volume: 368 start-page: 180 year: 2015 ident: 3068_CR27 publication-title: Proc Int Assoc Hydrol Sci doi: 10.5194/piahs-368-180-2015 – volume: 352 start-page: 336 year: 2008 ident: 3068_CR22 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.01.023 – volume: 25 start-page: 7609 year: 2021 ident: 3068_CR7 publication-title: Soft Comput doi: 10.1007/s00500-021-05721-5 – volume: 10 start-page: 1181 year: 2013 ident: 3068_CR30 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-013-0209-0 – volume: 8 start-page: 2 year: 2018 ident: 3068_CR36 publication-title: Sci Rep doi: 10.1038/s41598-017-18521-5 – volume: 527 start-page: 326 year: 2015 ident: 3068_CR32 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.04.072 – ident: 3068_CR26 doi: 10.1007/S11269-021-02966-5 – ident: 3068_CR15 doi: 10.1016/j.gsf.2020.09.006 – volume: 10 start-page: 13768 year: 2020 ident: 3068_CR34 publication-title: Sci Rep doi: 10.1038/s41598-020-70816-2 – ident: 3068_CR38 doi: 10.1007/S11269-020-02729-8 – ident: 3068_CR13 doi: 10.1016/j.jhydrol.2020.125249 – volume: 10 start-page: 5 year: 1994 ident: 3068_CR12 publication-title: Int J Forecast doi: 10.1016/0169-2070(94)90045-0 – volume: 2021 start-page: 1 year: 2021 ident: 3068_CR39 publication-title: Water Resour Manage doi: 10.1007/S11269-021-02920-5 – volume: 31 start-page: 2121 year: 2017 ident: 3068_CR17 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-016-1355-y – volume: 444 start-page: 78 year: 2012 ident: 3068_CR35 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.04.007 |
| SSID | ssj0010090 |
| Score | 2.4554594 |
| Snippet | Water resources in arid and semi-arid regions are susceptible to alteration in hydro-climatic variables, especially under climate change which makes runoff... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1191 |
| SubjectTerms | administrative management Algorithms Arid regions Arid zones Artificial neural networks Atmospheric Sciences basins Civil Engineering Climate change Climate models Climatic conditions Computer simulation Dams Data analysis Data mining Earth and Environmental Science Earth Sciences Environment Geotechnical Engineering & Applied Earth Sciences Global climate Global climate models Hydrogeology Hydrology/Water Resources Infinite series Intercomparison Neural networks Parameter identification Parameters Reservoirs Runoff Semi arid areas Semiarid zones Support vector machines temperature variance Water resources |
| SummonAdditionalLinks | – databaseName: SpringerLink Core Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbK4wAHSnmIbaEyUm9gKY7tPLihbVcc2tUKWsQtsh0bVtpN0CbLmZ_esTfZFESR4BQpdhzLHnu-8XjmQ-ibFTpkmgoC6kQTbjnsgyJihAuZm8TEknsymOuf8XCY3NykoyYorGpvu7cuSb9Td8FuNIxS4m6fO5ybkGgFrQmXbcbZ6FfXS98BoAZ_spKCYcRBYTahMi-38VQddRjzmVvUa5vBx_f1cxttNegSny_E4RP6YIodtPlPzsFd9Hg5L0pr8dV42jB3Yc99hAc-uwjuT8YAYuHpww5wv3Q-bSebZ3jUBRng_pK_EJcWf5e1JL881wQ-n9yWs3F9N62wLHLXgLs5M4duOd61SbWH_gx-_O5fkIaGgWhAZzURUe6yfOk0zUVokziVsQploCU3UoK1EQSKWsu05gpeWMUEDw2LchbpFMy5hO2j1aIszAHCKtVMiTigeS650rEEhMGUMZrmWknBe4i2s5HpJke5o8qYZF12ZTe6GYxu5kc3i3roZPnN_SJDx6u1D9tJzprVWmUACp0hRRMoPl4WwzpzzhNZmHLu6yQAbSJGe-i0nfiuif__8fPbqn9BG-FCdkhAD9FqPZubI7SuH-pxNfvqJf0vRWP4ew priority: 102 providerName: Springer Nature |
| Title | Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models |
| URI | https://link.springer.com/article/10.1007/s11269-022-03068-6 https://www.proquest.com/docview/2640561186 https://www.proquest.com/docview/2648853631 |
| Volume | 36 |
| WOSCitedRecordID | wos000764506200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4EeKE-xUCojcQOLJHachEvVhq440NVqF0o5RX7CStukbbKc-ekdO94NINELF0d52ZZm7Pns8cyH0GubqoSqOCVgThRhlsE8mHJKWCq0yU0mmCeDOfuUTSb5-XkxDRtubThWuZ4T_UStG-X2yN-B4XZgN8754eUVcaxRzrsaKDS20I7LVAZ6vnN8MpnONn4EQBB-l6WARRID4xnCZvrguTjhBXGn2R1uzgn_0zQNePMvF6m3POO9_-3zA3Q_YE581CvJQ3TH1I_Q7m-ZCB-jX7NV3ViL54uLwOeFPSMSHvucI7hcLgDawtUHI-CycZ5up7Hv8XQIPcDlhtUQNxZ_EJ0gp56BAh8tv0PPuh8XLRa1dhW48zQr6JZjY1u2T9CX8cnn8iMJ5AxEAWbrSMq1y_2likKnic2zQmQyEZESzAgBa5AokrG1VCkm4YGVNGWJoVxTrgpY5OX0Kdqum9o8Q1gWiso0i2KtBZMqE4A7qDRGxVpJkbIRitdyqVTIXO4INJbVkHPZybICWVZelhUfoTebfy77vB23fr2_FmAVxnBbDdIboVeb1zD6nEtF1KZZ-W9yADycxiP0dq0mQxX_bvH57S2-QPeSXjNJFO-j7e56ZV6iu-pnt2ivD9BW9vXbQdB1uDuNSlcmU1dmfTmHcjY_uwF5CQmv |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EYsFDASnMAijp0vJISqlFWr7q4qKKi31LGddqVtUposiBu_iN_I2Ek2gERvPXBaaTfrRM6bmWePZx7A8yJQPlcsoBhOFBWFQD8YhJyKQGoTm0gKJwbzeRLNZvHBQbK3Bj_7Whh7rLL3ic5R60rZPfLXGLgt2WVx-O70C7WqUTa72ktotLDYNd-_4ZKtfruzhe_3he-P3--n27RTFaAKyUZDg1DbplUqSXTgF3GUyCj3paekMFIiefa8nBUFV0rk-EWR80D4hoeahyrB1UnMcdxLcFngwsva1dRLV1kL5CtuTyfBJZnAUN0V6bSleswPE2rPzluWHtPwz0A4sNu_ErIuzo1v_m8zdAtudIyabLYmcBvWTHkHrv_WZ_Eu_PiwLKuiIB_nJ51aGXF6T2TsOqqQdDFH4o6frtSCpJXN41t7fEP2hsIKkq40G0lVkC3ZSDp1-hpkc3GEM9Ecn9REltoOYE8LLfGxrNbcor4Hny5kCu7DelmV5gGQPFE8DyKPaS1FriKJrIrnxiimVS4DMQLW4yBTXV92Kw-yyIaO0hY7GWInc9jJwhG8XP3ntO1Kcu7VGz1gss5D1dmAlhE8W_2MvsUmjGRpqqW7JkY6F3I2glc9LIch_n3Hh-ff8Slc3d6fTrLJzmz3EVzzW6ugHtuA9eZsaR7DFfW1mddnT5x9ETi8aLj-As7UX_8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAyF44I4oDDASPIG1OHZuSAhNLRXTRlVx094y27GhUpeMJQXxxu_i13HsJA0gsbc98FSpTZ3I-XzOZ5_LB_DYRjrkmkUU3Ymmwgq0g1HMqYhkYVKTSOHFYD7uJ7NZenCQzTfgZ18L49Iqe5voDXVRaXdGvo2O25FdlsbbtkuLmE-mL4-_UKcg5SKtvZxGC5E98_0bbt_qF7sTfNdPwnD66v34Ne0UBqhG4tHQKC5cAyudZUUU2jTJZKJCGWgpjJRIpINAMWu51kLhF1bxSISGxwWPdYY7lZTjuOfgfOK6Yrm0wXC-jmAgd_HnOxluzwS67a5gpy3bY2GcUZdH7xh7SuM_neLAdP8KznqfN736P8_WNbjSMW2y0y6N67Bhyhtw-bf-izfhx9tVWVlL3i2OOhUz4nWgyNR3WiHj5QIJPX76Egwyrlx8363T52Q-FFyQ8VrLkVSWTGQj6Ruvu0F2lp9wJprPRzWRZeEGcFlEK3wsp0G3rG_BhzOZgtuwWValuQNEZZqrKAlYUUihdCKRbXFljGaFVjISI2A9JnLd9Wt3siHLfOg07XCUI45yj6M8HsHT9X-O224lp1691YMn7yxXnQ_IGcGj9c9oc1wgSZamWvlrUqR5MWcjeNZDdBji33e8e_odH8JFRGm-vzvbuweXwnaB0IBtwWZzsjL34YL-2izqkwd-qRE4PGu0_gK93mjp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runoff+Simulation+Under+Future+Climate+Change+Conditions%3A+Performance+Comparison+of+Data-Mining+Algorithms+and+Conceptual+Models&rft.jtitle=Water+resources+management&rft.au=Icen%2C+Yoosefdoost&rft.au=Abbas%2C+Khashei-Siuki&rft.au=Tabari+Hossein&rft.au=Omolbani%2C+Mohammadrezapour&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=36&rft.issue=4&rft.spage=1191&rft.epage=1215&rft_id=info:doi/10.1007%2Fs11269-022-03068-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |