Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models

Water resources in arid and semi-arid regions are susceptible to alteration in hydro-climatic variables, especially under climate change which makes runoff simulations more challenging. This study aims to simulate input runoff to a dam reservoir in an arid region under changing climatic conditions u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management Jg. 36; H. 4; S. 1191 - 1215
Hauptverfasser: Yoosefdoost, Icen, Khashei-Siuki, Abbas, Tabari, Hossein, Mohammadrezapour, Omolbani
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.03.2022
Springer Nature B.V
Schlagworte:
ISSN:0920-4741, 1573-1650
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Water resources in arid and semi-arid regions are susceptible to alteration in hydro-climatic variables, especially under climate change which makes runoff simulations more challenging. This study aims to simulate input runoff to a dam reservoir in an arid region under changing climatic conditions using three data-mining algorithms, including Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Genetic Expression Programming (GEP), and the conceptual HYMOD model. Three parameters containing precipitation and maximum and minimum temperature were simulated from 30 Coupled Model Intercomparison Project Phase 5 (CMIP5) and Global Climate Models (GCMs) for the future period (2020–2040) under the high-end RCP8.5 scenario. The Long Ashton Research Station Weather Generator (LARS-WG) was selected as a downscaling method. The Gamma and M tests (This is an exam to determine whether an infinite series of functions will converge uniformly and absolutely or not) were applied to detect the best combinations and number of input parameters for the models, respectively. Among 29 defined input parameters for the models, the gamma test identified 11 parameters with the best functionality to simulate runoff. Based on the reliability estimates of model error variance by the M test, the data were partitioned as 75% for learning and the other 25% for test verification. A comparison of the runoff simulations of the models revealed a remarkable performance of the SVM model by 3, 5, and 14% compared to ANNs, GEP, and HYMOD models, respectively. The SVM model forecasted a 25% decrease in the mean runoff input to the dam reservoir for the 2020–2040 period compared to the study period (2000–2019). This result illustrates necessitating the implementation of sustainable adaptation strategies to protect future water resources in the basin.
AbstractList Water resources in arid and semi-arid regions are susceptible to alteration in hydro-climatic variables, especially under climate change which makes runoff simulations more challenging. This study aims to simulate input runoff to a dam reservoir in an arid region under changing climatic conditions using three data-mining algorithms, including Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Genetic Expression Programming (GEP), and the conceptual HYMOD model. Three parameters containing precipitation and maximum and minimum temperature were simulated from 30 Coupled Model Intercomparison Project Phase 5 (CMIP5) and Global Climate Models (GCMs) for the future period (2020–2040) under the high-end RCP8.5 scenario. The Long Ashton Research Station Weather Generator (LARS-WG) was selected as a downscaling method. The Gamma and M tests (This is an exam to determine whether an infinite series of functions will converge uniformly and absolutely or not) were applied to detect the best combinations and number of input parameters for the models, respectively. Among 29 defined input parameters for the models, the gamma test identified 11 parameters with the best functionality to simulate runoff. Based on the reliability estimates of model error variance by the M test, the data were partitioned as 75% for learning and the other 25% for test verification. A comparison of the runoff simulations of the models revealed a remarkable performance of the SVM model by 3, 5, and 14% compared to ANNs, GEP, and HYMOD models, respectively. The SVM model forecasted a 25% decrease in the mean runoff input to the dam reservoir for the 2020–2040 period compared to the study period (2000–2019). This result illustrates necessitating the implementation of sustainable adaptation strategies to protect future water resources in the basin.
Author Tabari, Hossein
Yoosefdoost, Icen
Mohammadrezapour, Omolbani
Khashei-Siuki, Abbas
Author_xml – sequence: 1
  givenname: Icen
  orcidid: 0000-0003-0711-8661
  surname: Yoosefdoost
  fullname: Yoosefdoost, Icen
  organization: Department of Water Engineering, University of Birjand
– sequence: 2
  givenname: Abbas
  orcidid: 0000-0002-2863-8482
  surname: Khashei-Siuki
  fullname: Khashei-Siuki, Abbas
  email: abbaskhashei@birjand.ac.ir
  organization: Department of Water Engineering, University of Birjand
– sequence: 3
  givenname: Hossein
  orcidid: 0000-0003-2052-4541
  surname: Tabari
  fullname: Tabari, Hossein
  organization: Department of Civil Engineering, KU Leuven
– sequence: 4
  givenname: Omolbani
  orcidid: 0000-0002-3815-6356
  surname: Mohammadrezapour
  fullname: Mohammadrezapour, Omolbani
  organization: Department of Sciences and Water Engineering, Gorgan University of Agriculture Science and Natural Resources
BookMark eNp9kUFrFTEQx4NU8LX6BTwFvHhZO0k22ay38myt0KKoPYe8bPKakk2eSfbgzY9utk8QeuhpYPj9Zob5n6KTmKJF6C2BDwRgOC-EUDF2QGkHDITsxAu0IXxgHREcTtAGRgpdP_TkFTot5QGgaSNs0J_vS0zO4R9-XoKuPkV8Fyeb8dVSl2zxNvhZ11bvddy3kuLkV6p8xN9sdinPOpq1Px909qXpyeFPuuru1kcf9_gi7FP29X4uWMdpHWDsoS464Ns02VBeo5dOh2Lf_Ktn6O7q8uf2urv5-vnL9uKmM4zT2nExAZFgxnHi1Mlh1MOOajC6t1pzyQF2xDlmTL9rDbdjvKeWiYkJM1I5SnaG3h_nHnL6tdhS1eyLsSHoaNNSFBW9lJwJRhr67gn6kJYc23UrBVwQIkWj6JEyOZWSrVOH3H6VfysCag1FHUNRLRT1GIpaJflEMr4-vr1m7cPzKjuqpe1pWeT_Vz1j_QXojaQk
CitedBy_id crossref_primary_10_1111_jac_70041
crossref_primary_10_1155_2022_6577274
crossref_primary_10_3390_agronomy12091997
crossref_primary_10_1007_s00382_023_06893_6
crossref_primary_10_1007_s12517_023_11352_x
crossref_primary_10_1016_j_egyr_2023_12_031
crossref_primary_10_1007_s11269_022_03254_6
crossref_primary_10_1016_j_jhydrol_2024_131834
crossref_primary_10_1155_2022_2166350
crossref_primary_10_1061_JHYEFF_HEENG_5826
crossref_primary_10_1111_jfr3_13012
crossref_primary_10_5194_hess_29_291_2025
crossref_primary_10_1007_s10668_023_03299_6
crossref_primary_10_2166_wcc_2023_469
crossref_primary_10_3390_w16071064
crossref_primary_10_3390_su141811149
crossref_primary_10_1007_s11269_022_03387_8
crossref_primary_10_2166_wcc_2025_499
crossref_primary_10_2166_wcc_2023_374
crossref_primary_10_3390_atmos14081235
crossref_primary_10_1007_s11269_022_03170_9
Cites_doi 10.1007/bf00994018
10.1061/(ASCE)CO.1943-7862.0001183
10.1007/S11269-020-02701-6
10.1007/S40710-021-00543-X
10.1016/j.jhydrol.2019.124223
10.1007/s11356-018-3026-7
10.1016/j.envsci.2017.10.008
10.1007/s40710-021-00512-4
10.1007/S11269-021-02911-6
10.12691/ajwr-5-4-1
10.1038/nclimate2893
10.1002/2018EF000813
10.3390/w13152049
10.1016/J.JHYDROL.2009.03.034
10.12691/ajcea-6-3-1
10.1007/s11269-021-02944-x
10.1201/9780429246593
10.1007/s00477-014-0954-8
10.12691/env-6-1-5
10.1016/j.eswa.2008.09.053
10.1007/S11269-021-02786-7
10.1007/s11629-014-3020-6
10.1007/s40710-020-00480-1
10.1016/j.jclepro.2020.125266
10.1016/j.scitotenv.2020.137688
10.1007/s11356-019-05553-9
10.1126/sciadv.abf8021
10.3390/w11040720
10.1002/hyp.6084
10.1061/(ASCE)HE.1943-5584.0001866
10.5194/piahs-368-180-2015
10.1016/j.jhydrol.2008.01.023
10.1007/s00500-021-05721-5
10.1007/s13762-013-0209-0
10.1038/s41598-017-18521-5
10.1016/j.jhydrol.2015.04.072
10.1007/S11269-021-02966-5
10.1016/j.gsf.2020.09.006
10.1038/s41598-020-70816-2
10.1007/S11269-020-02729-8
10.1016/j.jhydrol.2020.125249
10.1016/0169-2070(94)90045-0
10.1007/S11269-021-02920-5
10.1007/s00477-016-1355-y
10.1016/j.jhydrol.2012.04.007
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-022-03068-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection - QC
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Collection (ProQuest)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 1215
ExternalDocumentID 10_1007_s11269_022_03068_6
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c352t-56d0180c99d52f879a7b2a0ca4eaa58500b1ff3cc4beaafb3542e36d36c928983
IEDL.DBID RSV
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764506200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-4741
IngestDate Fri Sep 05 08:06:02 EDT 2025
Wed Nov 05 02:16:02 EST 2025
Tue Nov 18 21:22:03 EST 2025
Sat Nov 29 02:11:54 EST 2025
Fri Feb 21 02:47:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Artificial intelligence techniques
Climate change
LARS
Rainfall-runoff forecasting model
Gamma and M tests
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-56d0180c99d52f879a7b2a0ca4eaa58500b1ff3cc4beaafb3542e36d36c928983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0711-8661
0000-0003-2052-4541
0000-0002-2863-8482
0000-0002-3815-6356
PQID 2640561186
PQPubID 54174
PageCount 25
ParticipantIDs proquest_miscellaneous_2648853631
proquest_journals_2640561186
crossref_primary_10_1007_s11269_022_03068_6
crossref_citationtrail_10_1007_s11269_022_03068_6
springer_journals_10_1007_s11269_022_03068_6
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References TayfurGEmpirical, numerical, and soft modelling approaches for non-cohesive sediment transportEnviron Process20218375810.1007/s40710-020-00480-1
WangWDuYChauKAn ensemble hybrid forecasting model for annual runoff based on sample entropy, secondary decomposition, and long short-term memory neural networkWater Resour Manage2021202113210.1007/S11269-021-02920-5
YoosefDoost A, YoosefDoost I, Asghari H, Sadegh Sadeghian MS (2018b) Comparison of HadCM3, CSIRO Mk3 and GFDL CM2.1 in prediction the climate change in Taleghan River Basin. Am J Civil Eng Architect 6:93–100. https://doi.org/10.12691/ajcea-6-3-1
Yousefi MalekshahMGhazaviRSadatinejadSJEvaluating the effect of climate changes on runoff and maximum flood discharge in the dry area (Case Study : Tehran-Karaj Basin)Ecopersia20197211221In Farsi
FanYRHuangWHuangGHA PCM-based stochastic hydrological model for uncertainty quantification in watershed systemsStoch Env Res Risk Assess20152991592710.1007/s00477-014-0954-8
HosseinzadehtalaeiPTabariHWillemsPSatellite-based data driven quantification of pluvial floods over Europe under future climatic and socioeconomic changesSci Total Environ202072110.1016/j.scitotenv.2020.137688
Kharin V, Flato GM, Zhang X et al (2018) Risks from climate extremes change differently from 1.5°C to 2.0°C depending on rarity. Earth’s Future 6:704–715. https://doi.org/10.1002/2018EF000813
TabariHClimate change impact on flood and extreme precipitation increases with water availabilitySci Rep2020101376810.1038/s41598-020-70816-2
Islam ARMT, Talukdar S, Mahato S et al (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12:101075
RoyDKLong short-term memory networks to predict one-step ahead reference evapotranspiration in a subtropical climatic zoneEnviron Process2021891194110.1007/s40710-021-00512-4
BehzadMAsghariKEaziMPalhangMGeneralization performance of support vector machines and neural networks in runoff modelingExpert Syst Appl2009367624762910.1016/j.eswa.2008.09.053
KundzewiczZWKrysanovaVBenestadREUncertainty in climate change impacts on water resourcesEnviron Sci Policy2018791810.1016/j.envsci.2017.10.008
MengEHuangSHuangQA hybrid VMD-SVM model for practical streamflow prediction using an innovative input selection frameworkWater Resour Manage2021351321133710.1007/S11269-021-02786-7
CortesCVapnikVSupport-vector networksMach Learn19952027329710.1007/bf00994018
RavindranSMBhaskaranSKMAmbatSKNA deep neural network architecture to model reference evapotranspiration using a single input meteorological parameterEnviron Process202181567159910.1007/S40710-021-00543-X
MakkeasornAChangNBZhouXShort-term streamflow forecasting with global climate change implications - a comparative study between genetic programming and neural network modelsJ Hydrol200835233635410.1016/j.jhydrol.2008.01.023
DarabiHMohamadiSKarimidastenaeiZPrediction of daily suspended sediment load (SSL) using new optimization algorithms and soft computing modelsSoft Comput2021257609762610.1007/s00500-021-05721-5
ShoaibMShamseldinAYMelvilleBWKhanMMRunoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approachJ Hydrol201552732634410.1016/j.jhydrol.2015.04.072
SinghVKKumarDKashyapPSModelling of soil permeability using different data driven algorithms based on physical properties of soilJ Hydrol202058010.1016/j.jhydrol.2019.124223
Vijay S, Kamaraj K (2021) Prediction of water quality index in drinking water distribution system using activation functions based ann. Water Resour Manage 35:2, 35:535–553. https://doi.org/10.1007/S11269-020-02729-8
GhaithMSiamALiZEl-DakhakhniWHybrid hydrological data-driven approach for daily streamflow forecastingJ Hydrol Eng2020250401906310.1061/(ASCE)HE.1943-5584.0001866
RezaeianzadehMSteinATabariHAssessment of a conceptual hydrological model and artificial neural networks for daily outflows forecastingInt J Environ Sci Technol2013101181119210.1007/s13762-013-0209-0
Zhang W et al (2021) Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci Adv 7(31):eabf8021
WangYTabariHXuYUnraveling the role of human activities and climate variability in water level changes in the Taihu plain using artificial neural networkWater20191172010.3390/w11040720
Winsemius HC, Aerts JCJH, van Beek LPH et al (2015) Global drivers of future river flood risk. Nat Clim Change 64, 6:381–385. https://doi.org/10.1038/nclimate2893
BayramSAl-JibouriSEfficacy of estimation methods in forecasting building projects’ costsJ Constr Eng Manag201610.1061/(ASCE)CO.1943-7862.0001183
Hosseinzadehtalaei P, Tabari H, Willems P (2020a) Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. J Hydrol 590:125249
TabariHKisiOEzaniATalaeePHSVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environmentJ Hydrol2012444788910.1016/j.jhydrol.2012.04.007
ChoubinBKhalighi-SigaroodiSMalekianADrought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approachJ Mt Sci2014111593160510.1007/s11629-014-3020-6
Mohanta A, Pradhan A, Mallick M, Patra KC (2021) Assessment of shear stress distribution in meandering compound channels with differential roughness through various artificial intelligence approach. Water Resour Manage 35:13, 35:4535–4559. https://doi.org/10.1007/S11269-021-02966-5
TabariHWillemsPSeasonally varying footprint of climate change on precipitation in the Middle EastSci Rep2018821110.1038/s41598-017-18521-5
EfronBTibshiraniRJAn introduction to the bootstrap1994CRC Press10.1201/9780429246593
MohammadiAAYousefiMSoltaniJUsing the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sedimentsEnviron Sci Pollut Res201825303153032410.1007/s11356-018-3026-7
QuanZTengJSunWEvaluation of the HYMOD model for rainfall–runoff simulation using the GLUE methodProc Int Assoc Hydrol Sci201536818018510.5194/piahs-368-180-2015
Jafarzadeh A, Pourreza-Bilondi M, Siuki AK, Moghadam JR (2021) Examination of various feature selection approaches for daily precipitation downscaling in different climates. Water Resour Manage 35:2, 35:407–427. https://doi.org/10.1007/S11269-020-02701-6
Amiri-Ardakani Y, Najafzadeh M (2021) Pipe break rate assessment while considering physical and operational factors: a methodology based on global positioning system and data-driven techniques. Water Resour Manage 35:11, 35:3703–3720. https://doi.org/10.1007/S11269-021-02911-6
Dawood T, Elwakil E, Novoa HM, Delgado JFG (2021) Toward urban sustainability and clean potable water: Prediction of water quality via artificial neural networks. J Clean Prod 291:125266
HillTMarquezLO’ConnorMRemusWArtificial neural network models for forecasting and decision makingInt J Forecast19941051510.1016/0169-2070(94)90045-0
YoosefDoost A, Sadeghian MS, NodeFarahani M, Rasekhi A (2017) Comparison between performance of statistical and Low Cost ARIMA Model with GFDL, CM2. 1 and CGM 3 atmosphere-ocean general circulation models in assessment of the effects of climate change on temperature and precipitation in Taleghan Basin. Am J Water Resour 5:92–99. https://doi.org/10.12691/ajwr-5-4-1
YoosefDoost A, Asghari H, Abunuri R, Sadeghian MS (2018a) Comparison of CGCM3, CSIRO MK3 and HADCM3 Models in estimating the effects of climate change on temperature and precipitation in Taleghan Basin. Am J Environ Protect 6:28–34. https://doi.org/10.12691/env-6-1-5
KarandishFMousaviSSTabariHClimate change impact on precipitation and cardinal temperatures in different climatic zones in Iran: Analyzing the probable effects on cereal water-use efficiencyStoch Env Res Risk Assess2017312121214610.1007/s00477-016-1355-y
Khan MS, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statistical downscaling methods using Canadian Global Climate Model predictors. Hydrol Process 20:3085–3104. https://doi.org/10.1002/hyp.6084
LoveridgeMRahmanAEffects of probability-distributed losses on flood estimates using event-based rainfall-runoff modelsWater202113204910.3390/w13152049
Chakrabortty R, Pal SC, Janizadeh S et al (2021) Impact of climate change on future flood susceptibility: an evaluation based on deep learning algorithms and GCM model. Water Resour Manage 35:12, 35:4251–4274
MalikAKumarAKisiOShiriJEvaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modelingEnviron Sci Pollut Res201926226702268710.1007/s11356-019-05553-9
RemesanRShamimMAHanDMathewJRunoff prediction using an integrated hybrid modelling schemeJ Hydrol2009372486010.1016/J.JHYDROL.2009.03.034
G Tayfur (3068_CR37) 2021; 8
W Wang (3068_CR39) 2021; 2021
3068_CR46
3068_CR26
M Loveridge (3068_CR21) 2021; 13
A Malik (3068_CR23) 2019; 26
H Darabi (3068_CR7) 2021; 25
B Efron (3068_CR9) 1994
Z Quan (3068_CR27) 2015; 368
SM Ravindran (3068_CR28) 2021; 8
P Hosseinzadehtalaei (3068_CR14) 2020; 721
A Makkeasorn (3068_CR22) 2008; 352
T Hill (3068_CR12) 1994; 10
B Choubin (3068_CR5) 2014; 11
VK Singh (3068_CR33) 2020; 580
3068_CR41
3068_CR42
3068_CR43
H Tabari (3068_CR35) 2012; 444
H Tabari (3068_CR36) 2018; 8
3068_CR44
YR Fan (3068_CR10) 2015; 29
3068_CR16
3068_CR38
M Behzad (3068_CR3) 2009; 36
3068_CR18
3068_CR19
S Bayram (3068_CR2) 2016
3068_CR13
3068_CR8
3068_CR15
ZW Kundzewicz (3068_CR20) 2018; 79
R Remesan (3068_CR29) 2009; 372
3068_CR4
DK Roy (3068_CR31) 2021; 8
3068_CR1
C Cortes (3068_CR6) 1995; 20
M Ghaith (3068_CR11) 2020; 25
F Karandish (3068_CR17) 2017; 31
M Yousefi Malekshah (3068_CR45) 2019; 7
AA Mohammadi (3068_CR25) 2018; 25
M Rezaeianzadeh (3068_CR30) 2013; 10
M Shoaib (3068_CR32) 2015; 527
H Tabari (3068_CR34) 2020; 10
E Meng (3068_CR24) 2021; 35
Y Wang (3068_CR40) 2019; 11
References_xml – reference: BehzadMAsghariKEaziMPalhangMGeneralization performance of support vector machines and neural networks in runoff modelingExpert Syst Appl2009367624762910.1016/j.eswa.2008.09.053
– reference: WangYTabariHXuYUnraveling the role of human activities and climate variability in water level changes in the Taihu plain using artificial neural networkWater20191172010.3390/w11040720
– reference: Amiri-Ardakani Y, Najafzadeh M (2021) Pipe break rate assessment while considering physical and operational factors: a methodology based on global positioning system and data-driven techniques. Water Resour Manage 35:11, 35:3703–3720. https://doi.org/10.1007/S11269-021-02911-6
– reference: HillTMarquezLO’ConnorMRemusWArtificial neural network models for forecasting and decision makingInt J Forecast19941051510.1016/0169-2070(94)90045-0
– reference: LoveridgeMRahmanAEffects of probability-distributed losses on flood estimates using event-based rainfall-runoff modelsWater202113204910.3390/w13152049
– reference: MohammadiAAYousefiMSoltaniJUsing the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sedimentsEnviron Sci Pollut Res201825303153032410.1007/s11356-018-3026-7
– reference: HosseinzadehtalaeiPTabariHWillemsPSatellite-based data driven quantification of pluvial floods over Europe under future climatic and socioeconomic changesSci Total Environ202072110.1016/j.scitotenv.2020.137688
– reference: RezaeianzadehMSteinATabariHAssessment of a conceptual hydrological model and artificial neural networks for daily outflows forecastingInt J Environ Sci Technol2013101181119210.1007/s13762-013-0209-0
– reference: FanYRHuangWHuangGHA PCM-based stochastic hydrological model for uncertainty quantification in watershed systemsStoch Env Res Risk Assess20152991592710.1007/s00477-014-0954-8
– reference: Yousefi MalekshahMGhazaviRSadatinejadSJEvaluating the effect of climate changes on runoff and maximum flood discharge in the dry area (Case Study : Tehran-Karaj Basin)Ecopersia20197211221In Farsi
– reference: Mohanta A, Pradhan A, Mallick M, Patra KC (2021) Assessment of shear stress distribution in meandering compound channels with differential roughness through various artificial intelligence approach. Water Resour Manage 35:13, 35:4535–4559. https://doi.org/10.1007/S11269-021-02966-5
– reference: TabariHKisiOEzaniATalaeePHSVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environmentJ Hydrol2012444788910.1016/j.jhydrol.2012.04.007
– reference: YoosefDoost A, Sadeghian MS, NodeFarahani M, Rasekhi A (2017) Comparison between performance of statistical and Low Cost ARIMA Model with GFDL, CM2. 1 and CGM 3 atmosphere-ocean general circulation models in assessment of the effects of climate change on temperature and precipitation in Taleghan Basin. Am J Water Resour 5:92–99. https://doi.org/10.12691/ajwr-5-4-1
– reference: EfronBTibshiraniRJAn introduction to the bootstrap1994CRC Press10.1201/9780429246593
– reference: Jafarzadeh A, Pourreza-Bilondi M, Siuki AK, Moghadam JR (2021) Examination of various feature selection approaches for daily precipitation downscaling in different climates. Water Resour Manage 35:2, 35:407–427. https://doi.org/10.1007/S11269-020-02701-6
– reference: Winsemius HC, Aerts JCJH, van Beek LPH et al (2015) Global drivers of future river flood risk. Nat Clim Change 64, 6:381–385. https://doi.org/10.1038/nclimate2893
– reference: Khan MS, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statistical downscaling methods using Canadian Global Climate Model predictors. Hydrol Process 20:3085–3104. https://doi.org/10.1002/hyp.6084
– reference: QuanZTengJSunWEvaluation of the HYMOD model for rainfall–runoff simulation using the GLUE methodProc Int Assoc Hydrol Sci201536818018510.5194/piahs-368-180-2015
– reference: Vijay S, Kamaraj K (2021) Prediction of water quality index in drinking water distribution system using activation functions based ann. Water Resour Manage 35:2, 35:535–553. https://doi.org/10.1007/S11269-020-02729-8
– reference: ChoubinBKhalighi-SigaroodiSMalekianADrought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approachJ Mt Sci2014111593160510.1007/s11629-014-3020-6
– reference: YoosefDoost A, Asghari H, Abunuri R, Sadeghian MS (2018a) Comparison of CGCM3, CSIRO MK3 and HADCM3 Models in estimating the effects of climate change on temperature and precipitation in Taleghan Basin. Am J Environ Protect 6:28–34. https://doi.org/10.12691/env-6-1-5
– reference: MengEHuangSHuangQA hybrid VMD-SVM model for practical streamflow prediction using an innovative input selection frameworkWater Resour Manage2021351321133710.1007/S11269-021-02786-7
– reference: Hosseinzadehtalaei P, Tabari H, Willems P (2020a) Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. J Hydrol 590:125249
– reference: ShoaibMShamseldinAYMelvilleBWKhanMMRunoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approachJ Hydrol201552732634410.1016/j.jhydrol.2015.04.072
– reference: DarabiHMohamadiSKarimidastenaeiZPrediction of daily suspended sediment load (SSL) using new optimization algorithms and soft computing modelsSoft Comput2021257609762610.1007/s00500-021-05721-5
– reference: Islam ARMT, Talukdar S, Mahato S et al (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12:101075
– reference: KarandishFMousaviSSTabariHClimate change impact on precipitation and cardinal temperatures in different climatic zones in Iran: Analyzing the probable effects on cereal water-use efficiencyStoch Env Res Risk Assess2017312121214610.1007/s00477-016-1355-y
– reference: YoosefDoost A, YoosefDoost I, Asghari H, Sadegh Sadeghian MS (2018b) Comparison of HadCM3, CSIRO Mk3 and GFDL CM2.1 in prediction the climate change in Taleghan River Basin. Am J Civil Eng Architect 6:93–100. https://doi.org/10.12691/ajcea-6-3-1
– reference: Zhang W et al (2021) Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci Adv 7(31):eabf8021
– reference: MakkeasornAChangNBZhouXShort-term streamflow forecasting with global climate change implications - a comparative study between genetic programming and neural network modelsJ Hydrol200835233635410.1016/j.jhydrol.2008.01.023
– reference: MalikAKumarAKisiOShiriJEvaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modelingEnviron Sci Pollut Res201926226702268710.1007/s11356-019-05553-9
– reference: RavindranSMBhaskaranSKMAmbatSKNA deep neural network architecture to model reference evapotranspiration using a single input meteorological parameterEnviron Process202181567159910.1007/S40710-021-00543-X
– reference: RoyDKLong short-term memory networks to predict one-step ahead reference evapotranspiration in a subtropical climatic zoneEnviron Process2021891194110.1007/s40710-021-00512-4
– reference: WangWDuYChauKAn ensemble hybrid forecasting model for annual runoff based on sample entropy, secondary decomposition, and long short-term memory neural networkWater Resour Manage2021202113210.1007/S11269-021-02920-5
– reference: KundzewiczZWKrysanovaVBenestadREUncertainty in climate change impacts on water resourcesEnviron Sci Policy2018791810.1016/j.envsci.2017.10.008
– reference: TayfurGEmpirical, numerical, and soft modelling approaches for non-cohesive sediment transportEnviron Process20218375810.1007/s40710-020-00480-1
– reference: TabariHClimate change impact on flood and extreme precipitation increases with water availabilitySci Rep2020101376810.1038/s41598-020-70816-2
– reference: SinghVKKumarDKashyapPSModelling of soil permeability using different data driven algorithms based on physical properties of soilJ Hydrol202058010.1016/j.jhydrol.2019.124223
– reference: GhaithMSiamALiZEl-DakhakhniWHybrid hydrological data-driven approach for daily streamflow forecastingJ Hydrol Eng2020250401906310.1061/(ASCE)HE.1943-5584.0001866
– reference: BayramSAl-JibouriSEfficacy of estimation methods in forecasting building projects’ costsJ Constr Eng Manag201610.1061/(ASCE)CO.1943-7862.0001183
– reference: TabariHWillemsPSeasonally varying footprint of climate change on precipitation in the Middle EastSci Rep2018821110.1038/s41598-017-18521-5
– reference: Dawood T, Elwakil E, Novoa HM, Delgado JFG (2021) Toward urban sustainability and clean potable water: Prediction of water quality via artificial neural networks. J Clean Prod 291:125266
– reference: Chakrabortty R, Pal SC, Janizadeh S et al (2021) Impact of climate change on future flood susceptibility: an evaluation based on deep learning algorithms and GCM model. Water Resour Manage 35:12, 35:4251–4274
– reference: Kharin V, Flato GM, Zhang X et al (2018) Risks from climate extremes change differently from 1.5°C to 2.0°C depending on rarity. Earth’s Future 6:704–715. https://doi.org/10.1002/2018EF000813
– reference: RemesanRShamimMAHanDMathewJRunoff prediction using an integrated hybrid modelling schemeJ Hydrol2009372486010.1016/J.JHYDROL.2009.03.034
– reference: CortesCVapnikVSupport-vector networksMach Learn19952027329710.1007/bf00994018
– volume: 20
  start-page: 273
  year: 1995
  ident: 3068_CR6
  publication-title: Mach Learn
  doi: 10.1007/bf00994018
– year: 2016
  ident: 3068_CR2
  publication-title: J Constr Eng Manag
  doi: 10.1061/(ASCE)CO.1943-7862.0001183
– ident: 3068_CR16
  doi: 10.1007/S11269-020-02701-6
– volume: 8
  start-page: 1567
  year: 2021
  ident: 3068_CR28
  publication-title: Environ Process
  doi: 10.1007/S40710-021-00543-X
– volume: 580
  year: 2020
  ident: 3068_CR33
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124223
– volume: 25
  start-page: 30315
  year: 2018
  ident: 3068_CR25
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-3026-7
– volume: 79
  start-page: 1
  year: 2018
  ident: 3068_CR20
  publication-title: Environ Sci Policy
  doi: 10.1016/j.envsci.2017.10.008
– volume: 8
  start-page: 911
  year: 2021
  ident: 3068_CR31
  publication-title: Environ Process
  doi: 10.1007/s40710-021-00512-4
– ident: 3068_CR1
  doi: 10.1007/S11269-021-02911-6
– ident: 3068_CR44
  doi: 10.12691/ajwr-5-4-1
– ident: 3068_CR41
  doi: 10.1038/nclimate2893
– volume: 7
  start-page: 211
  year: 2019
  ident: 3068_CR45
  publication-title: Ecopersia
– ident: 3068_CR19
  doi: 10.1002/2018EF000813
– volume: 13
  start-page: 2049
  year: 2021
  ident: 3068_CR21
  publication-title: Water
  doi: 10.3390/w13152049
– volume: 372
  start-page: 48
  year: 2009
  ident: 3068_CR29
  publication-title: J Hydrol
  doi: 10.1016/J.JHYDROL.2009.03.034
– ident: 3068_CR43
  doi: 10.12691/ajcea-6-3-1
– ident: 3068_CR4
  doi: 10.1007/s11269-021-02944-x
– volume-title: An introduction to the bootstrap
  year: 1994
  ident: 3068_CR9
  doi: 10.1201/9780429246593
– volume: 29
  start-page: 915
  year: 2015
  ident: 3068_CR10
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-014-0954-8
– ident: 3068_CR42
  doi: 10.12691/env-6-1-5
– volume: 36
  start-page: 7624
  year: 2009
  ident: 3068_CR3
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.09.053
– volume: 35
  start-page: 1321
  year: 2021
  ident: 3068_CR24
  publication-title: Water Resour Manage
  doi: 10.1007/S11269-021-02786-7
– volume: 11
  start-page: 1593
  year: 2014
  ident: 3068_CR5
  publication-title: J Mt Sci
  doi: 10.1007/s11629-014-3020-6
– volume: 8
  start-page: 37
  year: 2021
  ident: 3068_CR37
  publication-title: Environ Process
  doi: 10.1007/s40710-020-00480-1
– ident: 3068_CR8
  doi: 10.1016/j.jclepro.2020.125266
– volume: 721
  year: 2020
  ident: 3068_CR14
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.137688
– volume: 26
  start-page: 22670
  year: 2019
  ident: 3068_CR23
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-05553-9
– ident: 3068_CR46
  doi: 10.1126/sciadv.abf8021
– volume: 11
  start-page: 720
  year: 2019
  ident: 3068_CR40
  publication-title: Water
  doi: 10.3390/w11040720
– ident: 3068_CR18
  doi: 10.1002/hyp.6084
– volume: 25
  start-page: 04019063
  year: 2020
  ident: 3068_CR11
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0001866
– volume: 368
  start-page: 180
  year: 2015
  ident: 3068_CR27
  publication-title: Proc Int Assoc Hydrol Sci
  doi: 10.5194/piahs-368-180-2015
– volume: 352
  start-page: 336
  year: 2008
  ident: 3068_CR22
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2008.01.023
– volume: 25
  start-page: 7609
  year: 2021
  ident: 3068_CR7
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05721-5
– volume: 10
  start-page: 1181
  year: 2013
  ident: 3068_CR30
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-013-0209-0
– volume: 8
  start-page: 2
  year: 2018
  ident: 3068_CR36
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18521-5
– volume: 527
  start-page: 326
  year: 2015
  ident: 3068_CR32
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.04.072
– ident: 3068_CR26
  doi: 10.1007/S11269-021-02966-5
– ident: 3068_CR15
  doi: 10.1016/j.gsf.2020.09.006
– volume: 10
  start-page: 13768
  year: 2020
  ident: 3068_CR34
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-70816-2
– ident: 3068_CR38
  doi: 10.1007/S11269-020-02729-8
– ident: 3068_CR13
  doi: 10.1016/j.jhydrol.2020.125249
– volume: 10
  start-page: 5
  year: 1994
  ident: 3068_CR12
  publication-title: Int J Forecast
  doi: 10.1016/0169-2070(94)90045-0
– volume: 2021
  start-page: 1
  year: 2021
  ident: 3068_CR39
  publication-title: Water Resour Manage
  doi: 10.1007/S11269-021-02920-5
– volume: 31
  start-page: 2121
  year: 2017
  ident: 3068_CR17
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-016-1355-y
– volume: 444
  start-page: 78
  year: 2012
  ident: 3068_CR35
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.04.007
SSID ssj0010090
Score 2.4555383
Snippet Water resources in arid and semi-arid regions are susceptible to alteration in hydro-climatic variables, especially under climate change which makes runoff...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1191
SubjectTerms administrative management
Algorithms
Arid regions
Arid zones
Artificial neural networks
Atmospheric Sciences
basins
Civil Engineering
Climate change
Climate models
Climatic conditions
Computer simulation
Dams
Data analysis
Data mining
Earth and Environmental Science
Earth Sciences
Environment
Geotechnical Engineering & Applied Earth Sciences
Global climate
Global climate models
Hydrogeology
Hydrology/Water Resources
Infinite series
Intercomparison
Neural networks
Parameter identification
Parameters
Reservoirs
Runoff
Semi arid areas
Semiarid zones
Support vector machines
temperature
variance
Water resources
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB0V6IEeoBRQt0BlJG6tReIkjs0FwcKKC6sVtBK3yHFiWGlJgGQ599MZe72bFgkuPUVJnNjSjD1vPJ55AAc6DwrD4pxyXaKDghaLKiELanTIlFCJTo12ZBPpcChubuTIb7g1_ljlfE10C3VRa7tHfoiG24LdUPDjh0dqWaNsdNVTaCzBiq1Uhnq-cno-HF0t4giIINwui0QnKUbj6dNmZslzIeOS2tPsFjcLyv81TR3efBUidZZnsP6_Y_4Max5zkpOZkmzAh7L6Ap_-qkS4CX-uplVtDLke33s-L-IYkcjA1Rwh_ckYoS1eXTIC6dc20m019oiMutQD0l-wGpLakDPVKnrpGCjIyeQWR9be3TdEVYX9gT1PM8VhWTa2SbMFvwfnv_oX1JMzUI2YraUJL2ztLy1lkTAjUqnSnKlAq7hUCn2QIMhDYyKt4xwfmDxKYlZGvIi4lujkiWgblqu6Kr8CQYNo8kSbJFUyZoaJUBUa7yNUFlwwRA_CuVwy7SuXWwKNSdbVXLayzFCWmZNlxnvwY_HNw6xux7utd-cCzPwcbrJOej3YX7zG2WdDKqoq66lrIxDw8Cjswc-5mnS_eLvHb-_3uAOrbKaZNAh3Ybl9mpZ78FE_t-Pm6bvX8hd_ngRJ
  priority: 102
  providerName: ProQuest
Title Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models
URI https://link.springer.com/article/10.1007/s11269-022-03068-6
https://www.proquest.com/docview/2640561186
https://www.proquest.com/docview/2648853631
Volume 36
WOSCitedRecordID wos000764506200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-CssM4wD5FB1SetNtmKXG-bG4ltNqFqqL76E6R48SsUkmmJt15fzrPbtJsaCDBxVFix7H89X4vz-_9AD6o1Mk081MaqhwVFJRYVHKRUa1cJrkMVKSVJZuIJhM-n4tp4xRWtafdW5Ok3ak7ZzeXhYKa0-cG53Ia7sJeYKLNGB199m1rO0DUYP-sCFSMfBSYjavM_-v4Vxx1GPOOWdRKm_Hh09r5Ag4adEmGm-nwEnby4hXs_xVz8DX8uVoXpdZktrhpmLuI5T4iYxtdhMTLBYJYvFq3AxKXxqZt5uYZmXZOBiTe8heSUpMLWUt6abkmyHB5Xa4W9c-bisgiMxWYkzNrbJbhXVtWb-DrePQl_kwbGgaqEJ3VNAgzE-VLCZEFTPNIyChl0lHSz6VEbcNxUldrTyk_xQc69QKf5V6YeaESqM5x7y30irLIj4Cg6NNpoHQQSeEzzbgrM4X3Hk4L3Bp4H9x2NBLVxCg3VBnLpIuubHo3wd5NbO8mYR8-bt_5tYnQ8WDpk3aQk2a1VgmCQqNIuRyz32-zcZ0Z44ks8nJty3CENqHn9uFTO_BdFfd_8d3jih_Dc7aZO9RxT6BXr9b5KTxTv-tFtRrAbvT9xwD2zkeT6RXeXTqxSdnUpNEmnQ3sergFk2T_Vw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ98GzVhQJGghNYJE7i2EgIVSmrVu2uKihSb8FxYrrSNmmbLIgbv4jfyNhJNoBEbz1wivJyImce32Q88wE815mXGxZmlOsCAxT0WFQJmVOjfaaEinRstCObiKdTcXwsD1fgZ18LY5dV9jbRGeq80vYf-Wt03Bbs-oK_OzunljXKZld7Co1WLPaL798wZKvf7u3g933B2Pj9UbJLO1YBqhFsNDTiuW1apaXMI2ZELFWcMeVpFRZKIXj2vMw3JtA6zPCAyYIoZEXA84BridGJCHDca3A9xMDL6tXES5ZZC8Qr7p-OxJAsRFfdFem0pXo-45LatfMWpQvK_3SEA7r9KyHr_Nz4zv82Q3fhdoeoyXarAvdgpSjvw9pvfRYfwI8Pi7IyhnycnXZsZcTxPZGx66hCkvkMgTtuXakFSSqbx7f6-IYcDoUVJFlyNpLKkB3VKDpx_Bpke_4FZ6I5Oa2JKnM7gF0ttMDXslxz83odPl3JFGzAalmVxSYQdPcmi7SJYiVDZpjwVa5xP0BVQHMoRuD3cpDqri-7pQeZp0NHaSs7KcpO6mQn5SN4ubznrO1KcunVW73ApJ2FqtNBWkbwbHkabYtNGKmyqBbuGoFwjgf-CF71YjkM8e8nPrz8iU_h5u7R5CA92JvuP4JbrNUK6vlbsNpcLIrHcEN_bWb1xROnXwQ-X7W4_gLogWB7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceKMGCiwSnGBVe_3aRUKoSoioClHEQ-rNXa-9NFJql9oBceN38euYWdsxINFbD5wiJ_ba2nyz863n8QE8MZmXWxFmPDYFblDQY3EtVc6t8YWWOjKJNU5sIpnN5MGBmm_Az74WhtIq-zXRLdR5Zegd-Q46biK7vox3bJcWMZ9MX5184aQgRZHWXk6jhch-8f0bbt_ql3sT_K-fCjF9_XH8hncKA9wg8Wh4FOfUwMoolUfCykTpJBPaMzostEYi7XmZb21gTJjhFzYLolAUQZwHsVG4U5EBjnsBLibUFYvSBsV8HcFA7uLe7yjcnoXotruCnbZszxex4pRHT4xd8vhPpzgw3b-Cs87nTa__z7N1A651TJvttqZxEzaK8hZc_a3_4m348X5VVtayD4vjTsWMOR0oNnWdVth4uUBCj5-uBIONK4rvk52-YPOh4IKN11qOrLJsohvN3zndDba7_Iwz0Rwd10yXOQ1AWUQrfCzSoFvWd-DTuUzBXdgsq7LYAoY0wGaRsVGiVSiskL7ODR4HaCK4TMoR-D0mUtP1ayfZkGU6dJomHKWIo9ThKI1H8Gx9zUnbreTMs7d78KTdylWnA3JG8Hj9M645FEjSZVGt3DkSaV4c-CN43kN0GOLfd7x39h0fwWVEafp2b7Z_H66I1kC452_DZnO6Kh7AJfO1WdSnD52pMTg8b7T-AvE3aWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runoff+Simulation+Under+Future+Climate+Change+Conditions%3A+Performance+Comparison+of+Data-Mining+Algorithms+and+Conceptual+Models&rft.jtitle=Water+resources+management&rft.au=Yoosefdoost%2C+Icen&rft.au=Khashei-Siuki%2C+Abbas&rft.au=Tabari%2C+Hossein&rft.au=Mohammadrezapour%2C+Omolbani&rft.date=2022-03-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=36&rft.issue=4&rft.spage=1191&rft.epage=1215&rft_id=info:doi/10.1007%2Fs11269-022-03068-6&rft.externalDocID=10_1007_s11269_022_03068_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon