A multi-stage joint planning and operation model for energy hubs considering integrated demand response programs
•Developing a stochastic model for the joint planning and operation of energy hub.•Dividing the solution space into two stages to increase the solution speed.•Tackling the problem by using continuous and discrete methods.•Reducing planning cost by employing RCGA.•Investigating the effect of continuo...
Saved in:
| Published in: | International journal of electrical power & energy systems Vol. 140; p. 108103 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2022
|
| Subjects: | |
| ISSN: | 0142-0615 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Developing a stochastic model for the joint planning and operation of energy hub.•Dividing the solution space into two stages to increase the solution speed.•Tackling the problem by using continuous and discrete methods.•Reducing planning cost by employing RCGA.•Investigating the effect of continuous and discrete methods on the hub planning.•Assessing the impacts of various DR and IDR programs on the hub planning.
Energy hub systems improve energy efficiency and reduce emissions due to the coordinated operation of different infrastructures. Given that these systems meet the needs of customers for different energies, their optimal design and operation is one of the main challenges in the field of energy supply. Hence, this paper presents a two-stage stochastic model for the integrated design and operation of an energy hub in the presence of electrical and thermal energy storage systems. As the electrical, heating, and cooling loads, besides the wind turbine’s (WT’s) output power, are associated with severe uncertainties, their impacts are addressed in the proposed model. Besides, demand response (DR) and integrated demand response (IDR) programs have been incorporated in the model. Furthermore, the real-coded genetic algorithm (RCGA), and binary-coded genetic algorithm (BCGA) are deployed to tackle the problem through continuous and discrete methods, respectively. The simulation results show that considering the uncertainties leads to the installation of larger capacities for assets and thus a 8.07% increase in investment cost. The results also indicate that the implementation of shiftable IDR program modifies the demand curve of electrical, cooling and heating loads, thereby reducing operating cost by 15.1%. Finally, the results substantiate that storage systems with discharge during peak hours not only increase system flexibility but also reduce operating cost. |
|---|---|
| AbstractList | •Developing a stochastic model for the joint planning and operation of energy hub.•Dividing the solution space into two stages to increase the solution speed.•Tackling the problem by using continuous and discrete methods.•Reducing planning cost by employing RCGA.•Investigating the effect of continuous and discrete methods on the hub planning.•Assessing the impacts of various DR and IDR programs on the hub planning.
Energy hub systems improve energy efficiency and reduce emissions due to the coordinated operation of different infrastructures. Given that these systems meet the needs of customers for different energies, their optimal design and operation is one of the main challenges in the field of energy supply. Hence, this paper presents a two-stage stochastic model for the integrated design and operation of an energy hub in the presence of electrical and thermal energy storage systems. As the electrical, heating, and cooling loads, besides the wind turbine’s (WT’s) output power, are associated with severe uncertainties, their impacts are addressed in the proposed model. Besides, demand response (DR) and integrated demand response (IDR) programs have been incorporated in the model. Furthermore, the real-coded genetic algorithm (RCGA), and binary-coded genetic algorithm (BCGA) are deployed to tackle the problem through continuous and discrete methods, respectively. The simulation results show that considering the uncertainties leads to the installation of larger capacities for assets and thus a 8.07% increase in investment cost. The results also indicate that the implementation of shiftable IDR program modifies the demand curve of electrical, cooling and heating loads, thereby reducing operating cost by 15.1%. Finally, the results substantiate that storage systems with discharge during peak hours not only increase system flexibility but also reduce operating cost. |
| ArticleNumber | 108103 |
| Author | Rezaee Jordehi, A. Esmaeel Nezhad, A. Catalão, J.P.S. Sheidaei, F. Ahmarinejad, A. Mansouri, S.A. Javadi, M.S. |
| Author_xml | – sequence: 1 givenname: S.A. surname: Mansouri fullname: Mansouri, S.A. email: Amir.mansouri24@gmail.com organization: Department of Electrical Engineering, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran – sequence: 2 givenname: A. surname: Ahmarinejad fullname: Ahmarinejad, A. organization: Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran – sequence: 3 givenname: F. surname: Sheidaei fullname: Sheidaei, F. organization: Department of Electrical Engineering, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran – sequence: 4 givenname: M.S. surname: Javadi fullname: Javadi, M.S. organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal – sequence: 5 givenname: A. surname: Rezaee Jordehi fullname: Rezaee Jordehi, A. organization: Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran – sequence: 6 givenname: A. surname: Esmaeel Nezhad fullname: Esmaeel Nezhad, A. organization: Department of Electrical Engineering, School of Energy Systems, LUT University, 53850 Lappeenranta, Finland – sequence: 7 givenname: J.P.S. surname: Catalão fullname: Catalão, J.P.S. organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal |
| BookMark | eNqFkMtOwzAQRb0oEm3hD1j4B1Jsx0lTFkhVxUuqxAbWlmOPg6PEjmwXqX9PQlixgNVIM_dcac4KLZx3gNANJRtKaHnbbmwLA8QNI4yNq4qSfIGWhHKWkZIWl2gVY0sI2e44W6Jhj_tTl2wWk2wAt966hIdOOmddg6XT2A8QZLLe4d5r6LDxAYOD0Jzxx6mOWHkXrYYw5UcYmjENGmvoJzpAHMYA4CH48dLHK3RhZBfh-meu0fvjw9vhOTu-Pr0c9sdM5QVLGVeG1cqAJkRWNN8xqA2TnFcl01vOOculMpTVWwaGKUkBJJOqKKGiJQcN-RrxuVcFH2MAI4ZgexnOghIxmRKtmE2JyZSYTY3Y3S9M2fT9fgrSdv_B9zMM42OfFoKIyoJToG0AlYT29u-CL2eDjqk |
| CitedBy_id | crossref_primary_10_3390_en15207614 crossref_primary_10_1016_j_energy_2024_130691 crossref_primary_10_1016_j_ijepes_2022_108312 crossref_primary_10_1016_j_energy_2024_132997 crossref_primary_10_1002_eng2_12768 crossref_primary_10_1016_j_eneco_2025_108825 crossref_primary_10_3389_fenrg_2022_975214 crossref_primary_10_1002_eng2_13055 crossref_primary_10_3390_en16072983 crossref_primary_10_1155_2023_9983860 crossref_primary_10_1016_j_ijepes_2023_109521 crossref_primary_10_1016_j_enbuild_2022_112383 crossref_primary_10_1007_s40313_024_01077_x crossref_primary_10_1016_j_est_2022_106558 crossref_primary_10_1016_j_enbuild_2022_112715 crossref_primary_10_1016_j_ijepes_2022_108602 crossref_primary_10_1007_s12667_023_00628_6 crossref_primary_10_1016_j_jobe_2023_107070 crossref_primary_10_1080_15567036_2023_2178548 crossref_primary_10_1016_j_energy_2025_138348 crossref_primary_10_1080_15435075_2023_2251048 crossref_primary_10_1016_j_est_2022_106160 crossref_primary_10_1007_s00202_023_01961_w crossref_primary_10_1007_s10668_025_06239_8 crossref_primary_10_1002_est2_681 crossref_primary_10_54097_hnsvqr47 crossref_primary_10_1016_j_segan_2025_101964 crossref_primary_10_3390_en16124695 crossref_primary_10_1016_j_ins_2024_120252 crossref_primary_10_1016_j_segan_2025_101962 crossref_primary_10_1016_j_enbuild_2024_113886 crossref_primary_10_3390_en16124694 crossref_primary_10_1016_j_ijepes_2023_109630 crossref_primary_10_1109_TIA_2024_3429068 crossref_primary_10_1007_s00202_023_02048_2 crossref_primary_10_1016_j_ijepes_2023_109507 crossref_primary_10_1016_j_est_2022_104630 crossref_primary_10_1016_j_ijepes_2022_108851 crossref_primary_10_1016_j_rser_2025_115395 crossref_primary_10_3390_en15249514 crossref_primary_10_1016_j_egyr_2022_08_184 crossref_primary_10_1088_1742_6596_2704_1_012007 crossref_primary_10_1016_j_jclepro_2024_144073 crossref_primary_10_1016_j_scs_2023_105120 crossref_primary_10_1016_j_est_2024_111084 crossref_primary_10_1515_ijeeps_2023_0416 crossref_primary_10_1016_j_enbuild_2023_113335 crossref_primary_10_3390_su141811773 crossref_primary_10_1016_j_segan_2024_101330 crossref_primary_10_1016_j_ijepes_2025_110989 crossref_primary_10_1016_j_ijepes_2022_108503 crossref_primary_10_1049_rpg2_12713 crossref_primary_10_3390_en16114443 crossref_primary_10_1016_j_est_2022_106025 crossref_primary_10_1007_s00202_023_01906_3 crossref_primary_10_1016_j_est_2024_111818 crossref_primary_10_1016_j_ijhydene_2022_07_255 crossref_primary_10_1016_j_renene_2024_121123 crossref_primary_10_1016_j_energy_2024_130826 crossref_primary_10_3390_su151612452 crossref_primary_10_1007_s00202_022_01599_0 crossref_primary_10_1049_rpg2_12838 crossref_primary_10_1016_j_est_2023_108065 crossref_primary_10_1016_j_est_2024_114121 crossref_primary_10_1016_j_segan_2024_101286 crossref_primary_10_1016_j_energy_2024_130391 crossref_primary_10_1016_j_jclepro_2023_137632 crossref_primary_10_1016_j_est_2023_107933 crossref_primary_10_1016_j_scs_2023_104535 crossref_primary_10_3390_buildings14051197 crossref_primary_10_12677_mos_2025_141014 crossref_primary_10_1016_j_energy_2024_132794 crossref_primary_10_1007_s40866_024_00204_6 crossref_primary_10_1016_j_renene_2024_120681 crossref_primary_10_1016_j_est_2023_108130 crossref_primary_10_1016_j_est_2022_104739 crossref_primary_10_1007_s43621_024_00412_1 crossref_primary_10_1016_j_energy_2024_132284 crossref_primary_10_1177_01436244231170387 crossref_primary_10_1007_s00202_023_02013_z crossref_primary_10_1016_j_renene_2025_124073 crossref_primary_10_1016_j_enconman_2025_120082 crossref_primary_10_3389_fenrg_2024_1384760 crossref_primary_10_1016_j_rser_2022_112854 crossref_primary_10_1016_j_applthermaleng_2024_123739 crossref_primary_10_1007_s00202_024_02555_w crossref_primary_10_1007_s10098_023_02660_7 crossref_primary_10_1016_j_egyr_2022_06_028 crossref_primary_10_1016_j_egyr_2023_06_048 crossref_primary_10_1016_j_renene_2025_123373 crossref_primary_10_1016_j_enbuild_2022_112765 crossref_primary_10_1016_j_ijhydene_2023_03_124 crossref_primary_10_1016_j_est_2022_104397 crossref_primary_10_1016_j_ijepes_2022_108499 crossref_primary_10_1155_2023_1964666 crossref_primary_10_1049_rpg2_12984 crossref_primary_10_1016_j_enbuild_2022_112764 crossref_primary_10_3390_su15010809 crossref_primary_10_3390_su15097157 crossref_primary_10_1049_rpg2_12869 crossref_primary_10_1109_ACCESS_2024_3391417 crossref_primary_10_1016_j_segan_2025_101658 crossref_primary_10_1016_j_apenergy_2023_121430 crossref_primary_10_1016_j_energy_2023_127699 crossref_primary_10_1016_j_apenergy_2023_120984 crossref_primary_10_1016_j_energy_2023_127697 crossref_primary_10_1016_j_est_2022_104719 crossref_primary_10_1016_j_est_2022_105009 crossref_primary_10_1016_j_scs_2022_103945 crossref_primary_10_1016_j_heliyon_2024_e33018 crossref_primary_10_1016_j_scs_2023_104801 crossref_primary_10_1016_j_est_2022_104841 crossref_primary_10_1016_j_jclepro_2024_141308 crossref_primary_10_1016_j_ijepes_2022_108787 crossref_primary_10_3390_wevj14030072 crossref_primary_10_1016_j_ijepes_2022_108708 crossref_primary_10_1016_j_est_2024_113476 crossref_primary_10_1007_s10462_023_10441_3 crossref_primary_10_1016_j_energy_2025_135782 crossref_primary_10_1016_j_energy_2025_136594 crossref_primary_10_1016_j_epsr_2023_109353 crossref_primary_10_1016_j_gloei_2025_01_004 crossref_primary_10_1016_j_est_2023_108700 crossref_primary_10_1016_j_ijepes_2023_109132 |
| Cites_doi | 10.1016/j.jclepro.2020.121079 10.1016/j.energy.2019.02.021 10.1049/iet-gtd.2018.6328 10.1016/j.applthermaleng.2018.12.108 10.1016/j.apenergy.2019.114390 10.1016/j.energy.2020.116931 10.1016/j.segan.2019.100274 10.1109/TPWRS.2021.3057724 10.1016/j.apenergy.2019.114393 10.1016/j.ijepes.2020.106030 10.3390/en11092278 10.1109/TSTE.2018.2878230 10.1016/j.energy.2021.120105 10.1109/ACCESS.2020.3026049 10.1016/j.segan.2019.100268 10.1016/j.energy.2020.118124 10.1109/TSG.2015.2390640 10.1109/TII.2019.2938444 10.1016/j.segan.2020.100428 10.1155/2019/4243853 10.1049/iet-rpg.2018.6018 10.3390/en11051050 10.1049/iet-rpg.2018.6005 10.1016/j.apenergy.2019.114195 10.1016/j.scs.2021.103136 10.1109/EEEIC/ICPSEurope51590.2021.9584609 10.1109/TR.2018.2837114 10.1049/iet-rpg.2016.0397 10.1016/j.applthermaleng.2019.113825 10.1016/j.energy.2018.08.046 10.1109/ACCESS.2020.3024846 10.1016/j.ijepes.2016.01.044 10.1016/j.ijepes.2014.03.038 10.1109/PESGM.2018.8586246 10.1109/EEEIC.2019.8783452 10.1016/j.epsr.2019.106082 10.1002/tee.22819 10.1016/j.enconman.2018.12.073 10.1109/PESGM40551.2019.8973885 10.1016/j.ijepes.2021.107912 10.1109/TIE.2020.2978707 10.1109/TR.2017.2740158 10.1016/j.egypro.2018.11.260 10.1109/TSTE.2019.2921110 10.1002/etep.2810 10.1016/j.egypro.2019.01.111 10.1016/j.epsr.2021.107183 10.1016/B978-0-12-823899-8.00011-X 10.1016/j.ijepes.2021.106803 10.1016/j.apenergy.2021.117837 10.1016/j.applthermaleng.2021.116837 10.1016/j.scs.2019.101998 10.1016/j.ijepes.2021.106904 10.1109/MPAE.2007.264850 10.1007/s40998-018-0138-5 10.1007/978-981-13-9783-7_19 10.1016/j.apenergy.2019.113372 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijepes.2022.108103 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ijepes_2022_108103 S0142061522001454 |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH ADVLN AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ GROUPED_DOAJ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c352t-4cf2bcfed00a81392ebf2a44862d744423acf12b72ef2ca1eea2ac56e8164ede3 |
| ISICitedReferencesCount | 129 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792083500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-0615 |
| IngestDate | Tue Nov 18 21:02:52 EST 2025 Sat Nov 29 03:56:18 EST 2025 Sat Oct 05 15:37:09 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy Storage Systems Integrated Demand Response Programs Wind Turbine Stochastic Programming Genetic Algorithm Energy Hub Planning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-4cf2bcfed00a81392ebf2a44862d744423acf12b72ef2ca1eea2ac56e8164ede3 |
| OpenAccessLink | https://lutpub.lut.fi/handle/10024/163905 |
| ParticipantIDs | crossref_primary_10_1016_j_ijepes_2022_108103 crossref_citationtrail_10_1016_j_ijepes_2022_108103 elsevier_sciencedirect_doi_10_1016_j_ijepes_2022_108103 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Papadimitriou, Anastasiadis, Psomopoulos, Vokas (b0145) 2019; 157 Zhang, Cao, Gao, Wang, Zhang, Yousefi (b0225) 2020; 260 Shahrabi, Hakimi, Hasankhani, Derakhshan, Abdi (b0130) 2021; 26 Gao, Xue, Wen, Wang, Huang, Xue (b0150) 2018, 2018 Teh (b0170) 2018; 67 Zhao, Gu, Huo, Shen, Hernando-Gil (b0100) 2020; 16 Ghasemi, Aghaei, Gharehpetian, Safdarian (b0045) 2019; 13 Heidari, Mortazavi, Bansal (b0080) 2020; 261 Chen, Shen, Guo, Sun (b0245) 2019; 158 Pazouki, Haghifam, Moser (b0265) 2014; 61 Wang, Yang, Short, Yang (b0285) 2017; 11 Mohamad, Teh, Lai, Chen (b0165) 2018; 11 Li, Wang, Han, Zhao (b0140) 2019, 2019 Rahmatian, Shamim, Bahramara (b0105) 2021; 191 Geidl, Koeppel, Favre-Perrod, Klockl, Andersson, Frohlich (b0005) 2007; 5 Liu, Zhang, Wang, Wu (b0035) 2019; 182 Teh, Lai (b0175) 2019; 20 Javadi, Esmaeel Nezhad (bib316) 2019; 29 Jadidbonab, Dolatabadi, Mohammadi‐Ivatloo, Abapour, Asadi (b0040) 2019; 13 Jadidbonab, Mohammadi-Ivatloo, Marzband, Siano (b0115) 2021; 68 Roustaei, Niknam, Salari, Chabok, Sheikh, Kavousi-Fard (b0220) 2020; 195 Zhang, Shahidehpour, Alabdulwahab, Abusorrah (b0020) 2015; 6 Cao, Wang, Du, Nojavan, Jermsittiparsert, Ghadimi (b0075) 2019; 20 Jamalzadeh, Hajiseyed Mirzahosseini, Faghihi, Panahi (b0060) 2020; 54 Teh, Lai, Cheng (b0180) 2017; 66 Javadi, Azami, Monsef (bib318) 2009; 4 Jabir, Teh, Ishak, Abunima (b0160) 2018; 11 Mansouri, Ahmarinejad, Nematbakhsh, Javadi, Jordehi, Catalão (b0255) 2021 Senemar, Rastegar, Dabbaghjamanesh, Hatziargyriou (b0050) 2020; 11 Mohamad, Teh, Lai (b0200) 2021; 223 Bisht (b0310) 2013; 3 Monemi Bidgoli, Karimi, Jadid, Anvari-Moghaddam (b0135) 2021; 196 Mansouri, Ahmarinejad, Ansarian, Javadi, Catalao (b0260) 2020; 120 Khorasany, Najafi-Ghalelou, Razzaghi, Mohammadi-Ivatloo (b0110) 2021; 129 Mansouri, Ahmarinejad, Nematbakhsh, Javadi, Jordehi, Catalão (b0270) 2021; 102852 Huang, Du, Capuder, Zhang, Zhang, Strbac (b0025) 2021; 36 Cheng, Zhang, Kirschen, Huang, Kang (b0215) 2020; 261 Amir Mansouri, Javadi, Ahmarinejad, Nematbakhsh, Zare, Catalão (b0280) 2021; 47 Chen, Sun, Shen, Guo, Guo, Xia (b0250) 2019; 252 Khoo, Teh, Lai (b0190) 2020; 8 Lai, Teh (b0185) 2022; 305 Amiri S, Honarvar M, sadegheih A. Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance. Energy 2018;163:1093–114. 10.1016/j.energy.2018.08.046. Mansouri SA, Ahmarinejad A, Javadi MS, Nezhad AE, Shafie-Khah M, Catalão JPS. Chapter 9 - Demand response role for enhancing the flexibility of local energy systems. In: Graditi G, Di Somma MBT-DER in LIES, editors., Elsevier; 2021, p. 279–313. 10.1016/B978-0-12-823899-8.00011-X. Huang W, Zhang N, Yang J, Wang Y, Kang C. Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy. 2019 IEEE Power Energy Soc. Gen. Meet., 2020, p. 1–1. 10.1109/pesgm40551.2019.8973885. Tian, Ebadi, Jermsittiparsert, Kadyrov, Ponomarev, Javanshir (b0125) 2019; 159 Huang, Zhang, Kang, Capuder, Holjevac, Kuzle (b0205) 2020; 179 Wang, Zhang, Ersoy, Sun, Bi (b0305) 2019; 2019 Fang J. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems. 2018 IEEE Power Energy Soc. Gen. Meet., 2018, p. 1–1. 10.1109/pesgm.2018.8586246. Javadi MS, Anvari-Moghaddam A, Guerrero JM, Esmaeel Nezhad A, Lotfi M, Catalão JPS. Optimal Operation of an Energy Hub in the Presence of Uncertainties. Proc - 2019 IEEE Int Conf Environ Electr Eng 2019 IEEE Ind Commer Power Syst Eur EEEIC/I CPS Eur 2019 2019:1–4. 10.1109/EEEIC.2019.8783452. Zhu X, Zhou M, Xiang Z, Zhang L, Sun Y, Li G. Research on optimal configuration of energy hub considering system flexibility. In: Xue Y, Zheng Y, Rahman S, editors. Lect. Notes Electr. Eng., vol. 585, Singapore: Springer Singapore; 2020, p. 243–57. 10.1007/978-981-13-9783-7_19. Qiu, Wang, Huang, Xie (b0030) 2019; 14 Ahmarinejad (b0055) 2021; 74 Najafi-Ghalelou, Nojavan, Zare, Mohammadi-Ivatloo (b0065) 2019; 149 Wan, Zheng, Luan, Tian, Li, Ma (b0300) 2021; 47 Lu, Liu, Ma, Wang, Zhou, Feng (b0120) 2020; 259 Bahmani, Karimi, Jadid (b0085) 2021; 130 Karamdel, Moghaddam (b0070) 2019; 13 Rakipour, Barati (b0090) 2019; 173 Metwaly, Teh (b0195) 2020; 8 Mansouri SA, Nematbakhsh E, Javadi MS, Jordehi AR, Shafie-khah M, Catalão JPS. Resilience Enhancement via Automatic Switching considering Direct Load Control Program and Energy Storage Systems. 2021 IEEE Int. Conf. Environ. Electr. Eng. 2021 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur., 2021, p. 1–6. 10.1109/EEEIC/ICPSEurope51590.2021.9584609. Javadi, Gough, Mansouri, Ahmarinejad, Nematbakhsh, Santos (bib317) 2022; 138 Honarmand, Ghaderi Shamim, Meyar-Naimi (b0155) 2021; 28 Pazouki, Haghifam (b0315) 2016; 80 Amiri, Niknam (b0235) 2019; 43 Mansouri, Ahmarinejad, Javadi, Catalão (b0295) 2020; 206 Cao, Wei, Wang, Mei, Shafie-Khah, Catalão (b0240) 2020; 11 10.1016/j.ijepes.2022.108103_b0015 Cheng (10.1016/j.ijepes.2022.108103_b0215) 2020; 261 Mansouri (10.1016/j.ijepes.2022.108103_b0295) 2020; 206 10.1016/j.ijepes.2022.108103_b0210 10.1016/j.ijepes.2022.108103_b0010 10.1016/j.ijepes.2022.108103_b0095 Cao (10.1016/j.ijepes.2022.108103_b0075) 2019; 20 10.1016/j.ijepes.2022.108103_b0290 Metwaly (10.1016/j.ijepes.2022.108103_b0195) 2020; 8 Heidari (10.1016/j.ijepes.2022.108103_b0080) 2020; 261 Huang (10.1016/j.ijepes.2022.108103_b0205) 2020; 179 Pazouki (10.1016/j.ijepes.2022.108103_b0265) 2014; 61 Bahmani (10.1016/j.ijepes.2022.108103_b0085) 2021; 130 Mohamad (10.1016/j.ijepes.2022.108103_b0200) 2021; 223 Amiri (10.1016/j.ijepes.2022.108103_b0235) 2019; 43 Mohamad (10.1016/j.ijepes.2022.108103_b0165) 2018; 11 Shahrabi (10.1016/j.ijepes.2022.108103_b0130) 2021; 26 Teh (10.1016/j.ijepes.2022.108103_b0170) 2018; 67 Monemi Bidgoli (10.1016/j.ijepes.2022.108103_b0135) 2021; 196 Jabir (10.1016/j.ijepes.2022.108103_b0160) 2018; 11 Ahmarinejad (10.1016/j.ijepes.2022.108103_b0055) 2021; 74 Javadi (10.1016/j.ijepes.2022.108103_bib318) 2009; 4 Cao (10.1016/j.ijepes.2022.108103_b0240) 2020; 11 Huang (10.1016/j.ijepes.2022.108103_b0025) 2021; 36 Mansouri (10.1016/j.ijepes.2022.108103_b0255) 2021 Khorasany (10.1016/j.ijepes.2022.108103_b0110) 2021; 129 Geidl (10.1016/j.ijepes.2022.108103_b0005) 2007; 5 Karamdel (10.1016/j.ijepes.2022.108103_b0070) 2019; 13 Mansouri (10.1016/j.ijepes.2022.108103_b0260) 2020; 120 Rahmatian (10.1016/j.ijepes.2022.108103_b0105) 2021; 191 Amir Mansouri (10.1016/j.ijepes.2022.108103_b0280) 2021; 47 Ghasemi (10.1016/j.ijepes.2022.108103_b0045) 2019; 13 Jamalzadeh (10.1016/j.ijepes.2022.108103_b0060) 2020; 54 Liu (10.1016/j.ijepes.2022.108103_b0035) 2019; 182 Lu (10.1016/j.ijepes.2022.108103_b0120) 2020; 259 Mansouri (10.1016/j.ijepes.2022.108103_b0270) 2021; 102852 Javadi (10.1016/j.ijepes.2022.108103_bib316) 2019; 29 Teh (10.1016/j.ijepes.2022.108103_b0180) 2017; 66 Wang (10.1016/j.ijepes.2022.108103_b0305) 2019; 2019 Senemar (10.1016/j.ijepes.2022.108103_b0050) 2020; 11 Khoo (10.1016/j.ijepes.2022.108103_b0190) 2020; 8 10.1016/j.ijepes.2022.108103_b0275 Zhang (10.1016/j.ijepes.2022.108103_b0225) 2020; 260 10.1016/j.ijepes.2022.108103_b0230 Chen (10.1016/j.ijepes.2022.108103_b0245) 2019; 158 Teh (10.1016/j.ijepes.2022.108103_b0175) 2019; 20 Qiu (10.1016/j.ijepes.2022.108103_b0030) 2019; 14 Rakipour (10.1016/j.ijepes.2022.108103_b0090) 2019; 173 Bisht (10.1016/j.ijepes.2022.108103_b0310) 2013; 3 Li (10.1016/j.ijepes.2022.108103_b0140) 2019 Jadidbonab (10.1016/j.ijepes.2022.108103_b0115) 2021; 68 Tian (10.1016/j.ijepes.2022.108103_b0125) 2019; 159 Jadidbonab (10.1016/j.ijepes.2022.108103_b0040) 2019; 13 Honarmand (10.1016/j.ijepes.2022.108103_b0155) 2021; 28 Lai (10.1016/j.ijepes.2022.108103_b0185) 2022; 305 Chen (10.1016/j.ijepes.2022.108103_b0250) 2019; 252 Zhang (10.1016/j.ijepes.2022.108103_b0020) 2015; 6 Papadimitriou (10.1016/j.ijepes.2022.108103_b0145) 2019; 157 Gao (10.1016/j.ijepes.2022.108103_b0150) 2018 Javadi (10.1016/j.ijepes.2022.108103_bib317) 2022; 138 Pazouki (10.1016/j.ijepes.2022.108103_b0315) 2016; 80 Wang (10.1016/j.ijepes.2022.108103_b0285) 2017; 11 Zhao (10.1016/j.ijepes.2022.108103_b0100) 2020; 16 Najafi-Ghalelou (10.1016/j.ijepes.2022.108103_b0065) 2019; 149 Roustaei (10.1016/j.ijepes.2022.108103_b0220) 2020; 195 Wan (10.1016/j.ijepes.2022.108103_b0300) 2021; 47 |
| References_xml | – volume: 68 start-page: 3124 year: 2021 end-page: 3136 ident: b0115 article-title: Short-Term Self-Scheduling of Virtual Energy Hub Plant Within Thermal Energy Market publication-title: IEEE Trans Ind Electron – volume: 13 start-page: 1177 year: 2019 end-page: 1189 ident: b0045 article-title: MILP model for integrated expansion planning of multi-carrier active energy systems publication-title: IET Gener Transm Distrib – volume: 5 start-page: 24 year: 2007 end-page: 30 ident: b0005 article-title: Energy hubs for the future publication-title: IEEE Power Energy Mag – volume: 260 year: 2020 ident: b0225 article-title: Optimum design of a multi-form energy hub by applying particle swarm optimization publication-title: J Clean Prod – volume: 16 start-page: 3460 year: 2020 end-page: 3469 ident: b0100 article-title: Two-Stage Distributionally Robust Optimization for Energy Hub Systems publication-title: IEEE Trans Ind Informatics – volume: 157 start-page: 939 year: 2019 end-page: 944 ident: b0145 article-title: Demand response schemes in energy hubs: A comparison study publication-title: Energy Procedia – volume: 206 year: 2020 ident: b0295 article-title: Two-stage stochastic framework for energy hubs planning considering demand response programs publication-title: Energy – volume: 47 year: 2021 ident: b0280 article-title: A coordinated energy management framework for industrial, residential and commercial energy hubs considering demand response programs publication-title: Sustain Energy Technol Assessments – volume: 223 year: 2021 ident: b0200 article-title: Optimum allocation of battery energy storage systems for power grid enhanced with solar energy publication-title: Energy – volume: 138 year: 2022 ident: bib317 article-title: A two-stage joint operation and planning model for sizing and siting of electrical energy storage devices considering demand response programs publication-title: Int J Electr Power Energy Syst – reference: Mansouri SA, Ahmarinejad A, Javadi MS, Nezhad AE, Shafie-Khah M, Catalão JPS. Chapter 9 - Demand response role for enhancing the flexibility of local energy systems. In: Graditi G, Di Somma MBT-DER in LIES, editors., Elsevier; 2021, p. 279–313. 10.1016/B978-0-12-823899-8.00011-X. – volume: 26 start-page: 100428 year: 2021 ident: b0130 article-title: Developing optimal energy management of energy hub in the presence of stochastic renewable energy resources publication-title: Sustain Energy, Grids Networks – reference: Fang J. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems. 2018 IEEE Power Energy Soc. Gen. Meet., 2018, p. 1–1. 10.1109/pesgm.2018.8586246. – volume: 11 start-page: 2278 year: 2018 ident: b0165 article-title: Development of Energy Storage Systems for Power Network Reliability publication-title: A Review Energies – volume: 47 year: 2021 ident: b0300 article-title: Assessment of wind energy resources in the urat area using optimized weibull distribution publication-title: Sustain Energy Technol Assessments – volume: 29 year: 2019 ident: bib316 article-title: Multi-objective, multi-year dynamic generation and transmission expansion planning- renewable energy sources integration for Iran’s National Power Grid publication-title: Int Transactions Electr Energy Syst – volume: 4 start-page: 199 year: 2009 end-page: 205 ident: bib318 article-title: Security constrained unit commitment of interconnected power systems publication-title: Int Rev Electr Eng – start-page: 282 year: 2018, 2018, end-page: 287 ident: b0150 article-title: Planning of Energy Hubs with Demand Side Management in Integrated Electricity-Gas Energy Systems publication-title: Int Conf Innov Smart Grid Technol ISGT Asia – volume: 43 start-page: 517 year: 2019 end-page: 526 ident: b0235 article-title: Optimal Planning of a Multi-carrier Energy Hub Using the Modified Bird Mating Optimizer publication-title: Iran J Sci Technol - Trans Electr Eng – volume: 120 year: 2020 ident: b0260 article-title: Stochastic planning and operation of energy hubs considering demand response programs using Benders decomposition approach publication-title: Int J Electr Power Energy Syst – volume: 11 start-page: 490 year: 2017 end-page: 500 ident: b0285 article-title: Chance constrained unit commitment considering comprehensive modelling of demand response resources publication-title: IET Renew Power Gener – volume: 261 year: 2020 ident: b0215 article-title: Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China publication-title: Appl Energy – volume: 11 start-page: 1236 year: 2020 end-page: 1246 ident: b0050 article-title: Dynamic Structural Sizing of Residential Energy Hubs publication-title: IEEE Trans Sustain Energy – volume: 11 start-page: 1050 year: 2018 ident: b0160 article-title: Impacts of Demand-Side Management on Electrical Power Systems publication-title: A Review Energies – start-page: 4214 year: 2019, 2019, end-page: 4219 ident: b0140 article-title: Generalized Modeling and Coordinated Management of Energy Hub Incorporating Wind Power and Demand Response publication-title: Proc 31st Chinese Control Decis Conf CCDC – volume: 13 start-page: 998 year: 2019 end-page: 1008 ident: b0040 article-title: Risk-constrained energy management of PV integrated smart energy hub in the presence of demand response program and compressed air energy storage publication-title: IET Renew Power Gener – volume: 159 start-page: 113825 year: 2019 ident: b0125 article-title: Risk-based stochastic scheduling of energy hub system in the presence of heating network and thermal energy management publication-title: Appl Therm Eng – volume: 261 start-page: 114393 year: 2020 ident: b0080 article-title: Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies publication-title: Appl Energy – reference: Amiri S, Honarvar M, sadegheih A. Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance. Energy 2018;163:1093–114. 10.1016/j.energy.2018.08.046. – reference: Javadi MS, Anvari-Moghaddam A, Guerrero JM, Esmaeel Nezhad A, Lotfi M, Catalão JPS. Optimal Operation of an Energy Hub in the Presence of Uncertainties. Proc - 2019 IEEE Int Conf Environ Electr Eng 2019 IEEE Ind Commer Power Syst Eur EEEIC/I CPS Eur 2019 2019:1–4. 10.1109/EEEIC.2019.8783452. – volume: 196 start-page: 107183 year: 2021 ident: b0135 article-title: Stochastic electrical and thermal energy management of energy hubs integrated with demand response programs and renewable energy: A prioritized multi-objective framework publication-title: Electr Power Syst Res – volume: 74 start-page: 103136 year: 2021 ident: b0055 article-title: A Multi-objective Optimization Framework for Dynamic Planning of Energy Hub Considering Integrated Demand Response Program publication-title: Sustain Cities Soc – volume: 259 start-page: 114195 year: 2020 ident: b0120 article-title: A robust optimization approach for optimal load dispatch of community energy hub publication-title: Appl Energy – volume: 252 year: 2019 ident: b0250 article-title: Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model publication-title: Appl Energy – volume: 129 start-page: 106803 year: 2021 ident: b0110 article-title: Transactive energy framework for optimal energy management of multi-carrier energy hubs under local electrical, thermal, and cooling market constraints publication-title: Int J Electr Power Energy Syst – volume: 191 start-page: 116837 year: 2021 ident: b0105 article-title: Optimal operation of the energy hubs in the islanded multi-carrier energy system using Cournot model publication-title: Appl Therm Eng – volume: 28 start-page: 100526 year: 2021 ident: b0155 article-title: A robust optimization framework for energy hub operation considering different time resolutions: A real case study. Sustain Energy, Grids publication-title: Networks – volume: 8 start-page: 181547 year: 2020 end-page: 181559 ident: b0195 article-title: Probabilistic Peak Demand Matching by Battery Energy Storage Alongside Dynamic Thermal Ratings and Demand Response for Enhanced Network Reliability publication-title: IEEE Access – volume: 2019 start-page: 4243853 year: 2019 ident: b0305 article-title: An Improved Real-Coded Genetic Algorithm Using the Heuristical Normal Distribution and Direction-Based Crossover publication-title: Comput Intell Neurosci – reference: Huang W, Zhang N, Yang J, Wang Y, Kang C. Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy. 2019 IEEE Power Energy Soc. Gen. Meet., 2020, p. 1–1. 10.1109/pesgm40551.2019.8973885. – volume: 182 start-page: 126 year: 2019 end-page: 142 ident: b0035 article-title: Standardized modelling and economic optimization of multi-carrier energy systems considering energy storage and demand response publication-title: Energy Convers Manag – volume: 61 start-page: 335 year: 2014 end-page: 345 ident: b0265 article-title: Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response publication-title: Int J Electr Power Energy Syst – volume: 173 start-page: 384 year: 2019 end-page: 399 ident: b0090 article-title: Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response publication-title: Energy – volume: 67 start-page: 1261 year: 2018 end-page: 1268 ident: b0170 article-title: Uncertainty Analysis of Transmission Line End-of-Life Failure Model for Bulk Electric System Reliability Studies publication-title: IEEE Trans Rel – volume: 158 start-page: 6496 year: 2019 end-page: 6501 ident: b0245 article-title: Robust planning-operation co-optimization of energy hub considering precise model of batteries’ economic efficiency publication-title: Energy Procedia – volume: 179 year: 2020 ident: b0205 article-title: Beijing subsidiary administrative center multi-energy systems: An optimal configuration planning publication-title: Electr Power Syst Res – volume: 14 start-page: 383 year: 2019 end-page: 393 ident: b0030 article-title: Optimal configuration and sizing of regional energy service company’s energy hub with integrated demand response publication-title: IEEJ Trans Electr Electron Eng – volume: 130 start-page: 106904 year: 2021 ident: b0085 article-title: Cooperative energy management of multi-energy hub systems considering demand response programs and ice storage publication-title: Int J Electr Power Energy Syst – volume: 13 start-page: 2287 year: 2019 end-page: 2297 ident: b0070 article-title: Robust expansion co-planning of electricity and natural gas infrastructures for multi energy-hub systems with high penetration of renewable energy sources publication-title: IET Renew Power Gener – volume: 80 start-page: 219 year: 2016 end-page: 239 ident: b0315 article-title: Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty publication-title: Int J Electr Power Energy Syst – volume: 8 start-page: 175319 year: 2020 end-page: 175328 ident: b0190 article-title: Demand Response and Dynamic Line Ratings for Optimum Power Network Reliability and Ageing publication-title: IEEE Access – reference: Mansouri SA, Nematbakhsh E, Javadi MS, Jordehi AR, Shafie-khah M, Catalão JPS. Resilience Enhancement via Automatic Switching considering Direct Load Control Program and Energy Storage Systems. 2021 IEEE Int. Conf. Environ. Electr. Eng. 2021 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur., 2021, p. 1–6. 10.1109/EEEIC/ICPSEurope51590.2021.9584609. – volume: 11 start-page: 3 year: 2020 end-page: 14 ident: b0240 article-title: Capacity Planning of Energy Hub in Multi-Carrier Energy Networks: A Data-Driven Robust Stochastic Programming Approach publication-title: IEEE Trans Sustain Energy – volume: 20 start-page: 100268 year: 2019 ident: b0175 article-title: Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks publication-title: Sustain Energy, Grids Networks – reference: Zhu X, Zhou M, Xiang Z, Zhang L, Sun Y, Li G. Research on optimal configuration of energy hub considering system flexibility. In: Xue Y, Zheng Y, Rahman S, editors. Lect. Notes Electr. Eng., vol. 585, Singapore: Springer Singapore; 2020, p. 243–57. 10.1007/978-981-13-9783-7_19. – volume: 149 start-page: 862 year: 2019 end-page: 880 ident: b0065 article-title: Robust scheduling of thermal, cooling and electrical hub energy system under market price uncertainty publication-title: Appl Therm Eng – volume: 195 year: 2020 ident: b0220 article-title: A scenario-based approach for the design of Smart Energy and Water Hub publication-title: Energy – start-page: 1 year: 2021 end-page: 6 ident: b0255 article-title: Energy Hub Design in the Presence of P2G System Considering the Variable Efficiencies of Gas-Fired Converters publication-title: 2021 Int Conf Smart Energy Syst Technol – volume: 54 start-page: 101998 year: 2020 ident: b0060 article-title: Optimal operation of energy hub system using hybrid stochastic-interval optimization approach publication-title: Sustainable Cities and Society – volume: 20 start-page: 100274 year: 2019 ident: b0075 article-title: Optimal operation of CCHP and renewable generation-based energy hub considering environmental perspective: An epsilon constraint and fuzzy methods publication-title: Sustain Energy, Grids Networks – volume: 66 start-page: 1110 year: 2017 end-page: 1119 ident: b0180 article-title: Impact of the Real-Time Thermal Loading on the Bulk Electric System Reliability publication-title: IEEE Trans Reliab – volume: 305 year: 2022 ident: b0185 article-title: Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability publication-title: Appl Energy – volume: 102852 year: 2021 ident: b0270 article-title: Energy Management in Microgrids including Smart Homes: A Multi-objective Approach publication-title: Sustain Cities Soc – volume: 6 start-page: 2302 year: 2015 end-page: 2311 ident: b0020 article-title: Optimal Expansion Planning of Energy Hub with Multiple Energy Infrastructures publication-title: IEEE Trans Smart Grid – volume: 36 start-page: 3948 year: 2021 end-page: 3959 ident: b0025 article-title: Reliability and Vulnerability Assessment of Multi-Energy Systems: An Energy Hub Based Method publication-title: IEEE Trans Power Syst – volume: 3 start-page: 299 year: 2013 end-page: 304 ident: b0310 publication-title: Comparative Analysis of Real and Binary Coded Genetic Algorithm for Fuzzy Time Series Prediction Fuzzy time series View project – volume: 260 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0225 article-title: Optimum design of a multi-form energy hub by applying particle swarm optimization publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.121079 – volume: 173 start-page: 384 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0090 article-title: Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response publication-title: Energy doi: 10.1016/j.energy.2019.02.021 – volume: 13 start-page: 1177 issue: 7 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0045 article-title: MILP model for integrated expansion planning of multi-carrier active energy systems publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2018.6328 – volume: 149 start-page: 862 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0065 article-title: Robust scheduling of thermal, cooling and electrical hub energy system under market price uncertainty publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.12.108 – volume: 261 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0215 article-title: Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114390 – volume: 195 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0220 article-title: A scenario-based approach for the design of Smart Energy and Water Hub publication-title: Energy doi: 10.1016/j.energy.2020.116931 – volume: 20 start-page: 100274 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0075 article-title: Optimal operation of CCHP and renewable generation-based energy hub considering environmental perspective: An epsilon constraint and fuzzy methods publication-title: Sustain Energy, Grids Networks doi: 10.1016/j.segan.2019.100274 – volume: 36 start-page: 3948 issue: 5 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0025 article-title: Reliability and Vulnerability Assessment of Multi-Energy Systems: An Energy Hub Based Method publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2021.3057724 – volume: 28 start-page: 100526 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0155 article-title: A robust optimization framework for energy hub operation considering different time resolutions: A real case study. Sustain Energy, Grids publication-title: Networks – volume: 261 start-page: 114393 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0080 article-title: Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114393 – volume: 120 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0260 article-title: Stochastic planning and operation of energy hubs considering demand response programs using Benders decomposition approach publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106030 – volume: 11 start-page: 2278 issue: 9 year: 2018 ident: 10.1016/j.ijepes.2022.108103_b0165 article-title: Development of Energy Storage Systems for Power Network Reliability publication-title: A Review Energies doi: 10.3390/en11092278 – volume: 11 start-page: 3 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0240 article-title: Capacity Planning of Energy Hub in Multi-Carrier Energy Networks: A Data-Driven Robust Stochastic Programming Approach publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2018.2878230 – volume: 223 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0200 article-title: Optimum allocation of battery energy storage systems for power grid enhanced with solar energy publication-title: Energy doi: 10.1016/j.energy.2021.120105 – volume: 8 start-page: 175319 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0190 article-title: Demand Response and Dynamic Line Ratings for Optimum Power Network Reliability and Ageing publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026049 – volume: 20 start-page: 100268 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0175 article-title: Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks publication-title: Sustain Energy, Grids Networks doi: 10.1016/j.segan.2019.100268 – volume: 4 start-page: 199 issue: 2 year: 2009 ident: 10.1016/j.ijepes.2022.108103_bib318 article-title: Security constrained unit commitment of interconnected power systems publication-title: Int Rev Electr Eng – volume: 206 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0295 article-title: Two-stage stochastic framework for energy hubs planning considering demand response programs publication-title: Energy doi: 10.1016/j.energy.2020.118124 – volume: 6 start-page: 2302 issue: 5 year: 2015 ident: 10.1016/j.ijepes.2022.108103_b0020 article-title: Optimal Expansion Planning of Energy Hub with Multiple Energy Infrastructures publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2390640 – volume: 16 start-page: 3460 issue: 5 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0100 article-title: Two-Stage Distributionally Robust Optimization for Energy Hub Systems publication-title: IEEE Trans Ind Informatics doi: 10.1109/TII.2019.2938444 – volume: 26 start-page: 100428 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0130 article-title: Developing optimal energy management of energy hub in the presence of stochastic renewable energy resources publication-title: Sustain Energy, Grids Networks doi: 10.1016/j.segan.2020.100428 – volume: 102852 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0270 article-title: Energy Management in Microgrids including Smart Homes: A Multi-objective Approach publication-title: Sustain Cities Soc – volume: 2019 start-page: 4243853 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0305 article-title: An Improved Real-Coded Genetic Algorithm Using the Heuristical Normal Distribution and Direction-Based Crossover publication-title: Comput Intell Neurosci doi: 10.1155/2019/4243853 – volume: 13 start-page: 998 issue: 6 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0040 article-title: Risk-constrained energy management of PV integrated smart energy hub in the presence of demand response program and compressed air energy storage publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2018.6018 – start-page: 282 year: 2018 ident: 10.1016/j.ijepes.2022.108103_b0150 article-title: Planning of Energy Hubs with Demand Side Management in Integrated Electricity-Gas Energy Systems publication-title: Int Conf Innov Smart Grid Technol ISGT Asia – volume: 11 start-page: 1050 issue: 5 year: 2018 ident: 10.1016/j.ijepes.2022.108103_b0160 article-title: Impacts of Demand-Side Management on Electrical Power Systems publication-title: A Review Energies doi: 10.3390/en11051050 – volume: 13 start-page: 2287 issue: 13 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0070 article-title: Robust expansion co-planning of electricity and natural gas infrastructures for multi energy-hub systems with high penetration of renewable energy sources publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2018.6005 – volume: 259 start-page: 114195 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0120 article-title: A robust optimization approach for optimal load dispatch of community energy hub publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114195 – volume: 47 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0280 article-title: A coordinated energy management framework for industrial, residential and commercial energy hubs considering demand response programs publication-title: Sustain Energy Technol Assessments – volume: 74 start-page: 103136 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0055 article-title: A Multi-objective Optimization Framework for Dynamic Planning of Energy Hub Considering Integrated Demand Response Program publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2021.103136 – ident: 10.1016/j.ijepes.2022.108103_b0290 doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584609 – volume: 67 start-page: 1261 issue: 3 year: 2018 ident: 10.1016/j.ijepes.2022.108103_b0170 article-title: Uncertainty Analysis of Transmission Line End-of-Life Failure Model for Bulk Electric System Reliability Studies publication-title: IEEE Trans Rel doi: 10.1109/TR.2018.2837114 – volume: 11 start-page: 490 year: 2017 ident: 10.1016/j.ijepes.2022.108103_b0285 article-title: Chance constrained unit commitment considering comprehensive modelling of demand response resources publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2016.0397 – volume: 159 start-page: 113825 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0125 article-title: Risk-based stochastic scheduling of energy hub system in the presence of heating network and thermal energy management publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.113825 – ident: 10.1016/j.ijepes.2022.108103_b0230 doi: 10.1016/j.energy.2018.08.046 – volume: 8 start-page: 181547 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0195 article-title: Probabilistic Peak Demand Matching by Battery Energy Storage Alongside Dynamic Thermal Ratings and Demand Response for Enhanced Network Reliability publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024846 – volume: 80 start-page: 219 year: 2016 ident: 10.1016/j.ijepes.2022.108103_b0315 article-title: Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2016.01.044 – volume: 61 start-page: 335 year: 2014 ident: 10.1016/j.ijepes.2022.108103_b0265 article-title: Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.03.038 – ident: 10.1016/j.ijepes.2022.108103_b0010 doi: 10.1109/PESGM.2018.8586246 – ident: 10.1016/j.ijepes.2022.108103_b0095 doi: 10.1109/EEEIC.2019.8783452 – volume: 179 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0205 article-title: Beijing subsidiary administrative center multi-energy systems: An optimal configuration planning publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2019.106082 – volume: 14 start-page: 383 issue: 3 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0030 article-title: Optimal configuration and sizing of regional energy service company’s energy hub with integrated demand response publication-title: IEEJ Trans Electr Electron Eng doi: 10.1002/tee.22819 – volume: 182 start-page: 126 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0035 article-title: Standardized modelling and economic optimization of multi-carrier energy systems considering energy storage and demand response publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.12.073 – ident: 10.1016/j.ijepes.2022.108103_b0015 doi: 10.1109/PESGM40551.2019.8973885 – volume: 138 year: 2022 ident: 10.1016/j.ijepes.2022.108103_bib317 article-title: A two-stage joint operation and planning model for sizing and siting of electrical energy storage devices considering demand response programs publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.107912 – volume: 68 start-page: 3124 issue: 4 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0115 article-title: Short-Term Self-Scheduling of Virtual Energy Hub Plant Within Thermal Energy Market publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2020.2978707 – volume: 66 start-page: 1110 year: 2017 ident: 10.1016/j.ijepes.2022.108103_b0180 article-title: Impact of the Real-Time Thermal Loading on the Bulk Electric System Reliability publication-title: IEEE Trans Reliab doi: 10.1109/TR.2017.2740158 – volume: 157 start-page: 939 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0145 article-title: Demand response schemes in energy hubs: A comparison study publication-title: Energy Procedia doi: 10.1016/j.egypro.2018.11.260 – volume: 11 start-page: 1236 issue: 3 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0050 article-title: Dynamic Structural Sizing of Residential Energy Hubs publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2019.2921110 – start-page: 1 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0255 article-title: Energy Hub Design in the Presence of P2G System Considering the Variable Efficiencies of Gas-Fired Converters publication-title: 2021 Int Conf Smart Energy Syst Technol – volume: 29 issue: 4 year: 2019 ident: 10.1016/j.ijepes.2022.108103_bib316 article-title: Multi-objective, multi-year dynamic generation and transmission expansion planning- renewable energy sources integration for Iran’s National Power Grid publication-title: Int Transactions Electr Energy Syst doi: 10.1002/etep.2810 – volume: 158 start-page: 6496 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0245 article-title: Robust planning-operation co-optimization of energy hub considering precise model of batteries’ economic efficiency publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.111 – volume: 3 start-page: 299 year: 2013 ident: 10.1016/j.ijepes.2022.108103_b0310 publication-title: Comparative Analysis of Real and Binary Coded Genetic Algorithm for Fuzzy Time Series Prediction Fuzzy time series View project – volume: 196 start-page: 107183 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0135 article-title: Stochastic electrical and thermal energy management of energy hubs integrated with demand response programs and renewable energy: A prioritized multi-objective framework publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2021.107183 – ident: 10.1016/j.ijepes.2022.108103_b0275 doi: 10.1016/B978-0-12-823899-8.00011-X – volume: 129 start-page: 106803 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0110 article-title: Transactive energy framework for optimal energy management of multi-carrier energy hubs under local electrical, thermal, and cooling market constraints publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.106803 – volume: 305 year: 2022 ident: 10.1016/j.ijepes.2022.108103_b0185 article-title: Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117837 – volume: 191 start-page: 116837 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0105 article-title: Optimal operation of the energy hubs in the islanded multi-carrier energy system using Cournot model publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.116837 – volume: 54 start-page: 101998 year: 2020 ident: 10.1016/j.ijepes.2022.108103_b0060 article-title: Optimal operation of energy hub system using hybrid stochastic-interval optimization approach publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2019.101998 – volume: 130 start-page: 106904 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0085 article-title: Cooperative energy management of multi-energy hub systems considering demand response programs and ice storage publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.106904 – start-page: 4214 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0140 article-title: Generalized Modeling and Coordinated Management of Energy Hub Incorporating Wind Power and Demand Response publication-title: Proc 31st Chinese Control Decis Conf CCDC – volume: 5 start-page: 24 issue: 1 year: 2007 ident: 10.1016/j.ijepes.2022.108103_b0005 article-title: Energy hubs for the future publication-title: IEEE Power Energy Mag doi: 10.1109/MPAE.2007.264850 – volume: 47 year: 2021 ident: 10.1016/j.ijepes.2022.108103_b0300 article-title: Assessment of wind energy resources in the urat area using optimized weibull distribution publication-title: Sustain Energy Technol Assessments – volume: 43 start-page: 517 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0235 article-title: Optimal Planning of a Multi-carrier Energy Hub Using the Modified Bird Mating Optimizer publication-title: Iran J Sci Technol - Trans Electr Eng doi: 10.1007/s40998-018-0138-5 – ident: 10.1016/j.ijepes.2022.108103_b0210 doi: 10.1007/978-981-13-9783-7_19 – volume: 252 year: 2019 ident: 10.1016/j.ijepes.2022.108103_b0250 article-title: Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113372 |
| SSID | ssj0007942 |
| Score | 2.6506813 |
| Snippet | •Developing a stochastic model for the joint planning and operation of energy hub.•Dividing the solution space into two stages to increase the solution... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108103 |
| SubjectTerms | Energy Hub Planning Energy Storage Systems Genetic Algorithm Integrated Demand Response Programs Stochastic Programming Wind Turbine |
| Title | A multi-stage joint planning and operation model for energy hubs considering integrated demand response programs |
| URI | https://dx.doi.org/10.1016/j.ijepes.2022.108103 |
| Volume | 140 |
| WOSCitedRecordID | wos000792083500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0142-0615 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007942 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9tAEF1cp4f2UPpJ04-wh96ChLWyLOkoSkIb0lBwCr6J1e6otkhkEbsm_6R_t7M7WkkhJW0KvQiz9kpi53k1M3rzhrEPRWlExFXkBSmAEdUuvFTLFLEMGA8lZSgLqzN7Gp-dJYtF-nU0-ulqYXYXcV0n19dp819NjWNobFM6ew9zdyfFAfyMRscjmh2Pf2X4jEiCHrp93-GwWq_qrekVbVsT2VcF6wZas9s2OCT6TSWAS9xGDBHd9vCkapdWTUIfari0XHQi1YJjdm2G7u3N_OJAlYK67VhANKYvm0Vce9HNQDTd5sZr80bBsgzmfuZ3kFxeSlOqWBEo-y_mS1hpCXbCcTd6IndS27Ev_twfJjcwLnbsrTbj5qpueooTJUGF6UgR3djFSfXp1hOBkhOVv6qgAaPPLoThVQaTsH8CdrxEQ3UT5szCUM0QuQ_YnoijNBmzvezz0eKke8jjNiaIHUu34qoyLXXw9rV-7_UMPJnzp-xJG4LwjKDzjI2gfs4eD4QpX7Am4wMQcQsi7kDEEQa8AxG3IOIIIk725AZEfAAi3oOIE4i4AxF3IHrJvh0fnX_85LW9OTyFLvvWm6pSFKoEPZnIBKMIAfivlxjrz4SOp1N00qUqA1HEAkqhZAAghVTRDBKMz0FD-IqN63UNrxlXopS46pFSWk_LmUqKWKLfquIIwrhQwT4L3drlqhWuN_1TLnLHUKxyWvHcrHhOK77PvG5WQ8Itf_h97MySt84nOZU5IunOmW_-eeZb9qgH_Ts23l79gPfsodptV5urgxZyvwCAKLHB |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-stage+joint+planning+and+operation+model+for+energy+hubs+considering+integrated+demand+response+programs&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Mansouri%2C+S.A.&rft.au=Ahmarinejad%2C+A.&rft.au=Sheidaei%2C+F.&rft.au=Javadi%2C+M.S.&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.volume=140&rft_id=info:doi/10.1016%2Fj.ijepes.2022.108103&rft.externalDocID=S0142061522001454 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |