A multi-stage joint planning and operation model for energy hubs considering integrated demand response programs

•Developing a stochastic model for the joint planning and operation of energy hub.•Dividing the solution space into two stages to increase the solution speed.•Tackling the problem by using continuous and discrete methods.•Reducing planning cost by employing RCGA.•Investigating the effect of continuo...

Full description

Saved in:
Bibliographic Details
Published in:International journal of electrical power & energy systems Vol. 140; p. 108103
Main Authors: Mansouri, S.A., Ahmarinejad, A., Sheidaei, F., Javadi, M.S., Rezaee Jordehi, A., Esmaeel Nezhad, A., Catalão, J.P.S.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2022
Subjects:
ISSN:0142-0615
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Developing a stochastic model for the joint planning and operation of energy hub.•Dividing the solution space into two stages to increase the solution speed.•Tackling the problem by using continuous and discrete methods.•Reducing planning cost by employing RCGA.•Investigating the effect of continuous and discrete methods on the hub planning.•Assessing the impacts of various DR and IDR programs on the hub planning. Energy hub systems improve energy efficiency and reduce emissions due to the coordinated operation of different infrastructures. Given that these systems meet the needs of customers for different energies, their optimal design and operation is one of the main challenges in the field of energy supply. Hence, this paper presents a two-stage stochastic model for the integrated design and operation of an energy hub in the presence of electrical and thermal energy storage systems. As the electrical, heating, and cooling loads, besides the wind turbine’s (WT’s) output power, are associated with severe uncertainties, their impacts are addressed in the proposed model. Besides, demand response (DR) and integrated demand response (IDR) programs have been incorporated in the model. Furthermore, the real-coded genetic algorithm (RCGA), and binary-coded genetic algorithm (BCGA) are deployed to tackle the problem through continuous and discrete methods, respectively. The simulation results show that considering the uncertainties leads to the installation of larger capacities for assets and thus a 8.07% increase in investment cost. The results also indicate that the implementation of shiftable IDR program modifies the demand curve of electrical, cooling and heating loads, thereby reducing operating cost by 15.1%. Finally, the results substantiate that storage systems with discharge during peak hours not only increase system flexibility but also reduce operating cost.
AbstractList •Developing a stochastic model for the joint planning and operation of energy hub.•Dividing the solution space into two stages to increase the solution speed.•Tackling the problem by using continuous and discrete methods.•Reducing planning cost by employing RCGA.•Investigating the effect of continuous and discrete methods on the hub planning.•Assessing the impacts of various DR and IDR programs on the hub planning. Energy hub systems improve energy efficiency and reduce emissions due to the coordinated operation of different infrastructures. Given that these systems meet the needs of customers for different energies, their optimal design and operation is one of the main challenges in the field of energy supply. Hence, this paper presents a two-stage stochastic model for the integrated design and operation of an energy hub in the presence of electrical and thermal energy storage systems. As the electrical, heating, and cooling loads, besides the wind turbine’s (WT’s) output power, are associated with severe uncertainties, their impacts are addressed in the proposed model. Besides, demand response (DR) and integrated demand response (IDR) programs have been incorporated in the model. Furthermore, the real-coded genetic algorithm (RCGA), and binary-coded genetic algorithm (BCGA) are deployed to tackle the problem through continuous and discrete methods, respectively. The simulation results show that considering the uncertainties leads to the installation of larger capacities for assets and thus a 8.07% increase in investment cost. The results also indicate that the implementation of shiftable IDR program modifies the demand curve of electrical, cooling and heating loads, thereby reducing operating cost by 15.1%. Finally, the results substantiate that storage systems with discharge during peak hours not only increase system flexibility but also reduce operating cost.
ArticleNumber 108103
Author Rezaee Jordehi, A.
Esmaeel Nezhad, A.
Catalão, J.P.S.
Sheidaei, F.
Ahmarinejad, A.
Mansouri, S.A.
Javadi, M.S.
Author_xml – sequence: 1
  givenname: S.A.
  surname: Mansouri
  fullname: Mansouri, S.A.
  email: Amir.mansouri24@gmail.com
  organization: Department of Electrical Engineering, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
– sequence: 2
  givenname: A.
  surname: Ahmarinejad
  fullname: Ahmarinejad, A.
  organization: Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
– sequence: 3
  givenname: F.
  surname: Sheidaei
  fullname: Sheidaei, F.
  organization: Department of Electrical Engineering, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
– sequence: 4
  givenname: M.S.
  surname: Javadi
  fullname: Javadi, M.S.
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
– sequence: 5
  givenname: A.
  surname: Rezaee Jordehi
  fullname: Rezaee Jordehi, A.
  organization: Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
– sequence: 6
  givenname: A.
  surname: Esmaeel Nezhad
  fullname: Esmaeel Nezhad, A.
  organization: Department of Electrical Engineering, School of Energy Systems, LUT University, 53850 Lappeenranta, Finland
– sequence: 7
  givenname: J.P.S.
  surname: Catalão
  fullname: Catalão, J.P.S.
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
BookMark eNqFkMtOwzAQRb0oEm3hD1j4B1Jsx0lTFkhVxUuqxAbWlmOPg6PEjmwXqX9PQlixgNVIM_dcac4KLZx3gNANJRtKaHnbbmwLA8QNI4yNq4qSfIGWhHKWkZIWl2gVY0sI2e44W6Jhj_tTl2wWk2wAt966hIdOOmddg6XT2A8QZLLe4d5r6LDxAYOD0Jzxx6mOWHkXrYYw5UcYmjENGmvoJzpAHMYA4CH48dLHK3RhZBfh-meu0fvjw9vhOTu-Pr0c9sdM5QVLGVeG1cqAJkRWNN8xqA2TnFcl01vOOculMpTVWwaGKUkBJJOqKKGiJQcN-RrxuVcFH2MAI4ZgexnOghIxmRKtmE2JyZSYTY3Y3S9M2fT9fgrSdv_B9zMM42OfFoKIyoJToG0AlYT29u-CL2eDjqk
CitedBy_id crossref_primary_10_3390_en15207614
crossref_primary_10_1016_j_energy_2024_130691
crossref_primary_10_1016_j_ijepes_2022_108312
crossref_primary_10_1016_j_energy_2024_132997
crossref_primary_10_1002_eng2_12768
crossref_primary_10_1016_j_eneco_2025_108825
crossref_primary_10_3389_fenrg_2022_975214
crossref_primary_10_1002_eng2_13055
crossref_primary_10_3390_en16072983
crossref_primary_10_1155_2023_9983860
crossref_primary_10_1016_j_ijepes_2023_109521
crossref_primary_10_1016_j_enbuild_2022_112383
crossref_primary_10_1007_s40313_024_01077_x
crossref_primary_10_1016_j_est_2022_106558
crossref_primary_10_1016_j_enbuild_2022_112715
crossref_primary_10_1016_j_ijepes_2022_108602
crossref_primary_10_1007_s12667_023_00628_6
crossref_primary_10_1016_j_jobe_2023_107070
crossref_primary_10_1080_15567036_2023_2178548
crossref_primary_10_1016_j_energy_2025_138348
crossref_primary_10_1080_15435075_2023_2251048
crossref_primary_10_1016_j_est_2022_106160
crossref_primary_10_1007_s00202_023_01961_w
crossref_primary_10_1007_s10668_025_06239_8
crossref_primary_10_1002_est2_681
crossref_primary_10_54097_hnsvqr47
crossref_primary_10_1016_j_segan_2025_101964
crossref_primary_10_3390_en16124695
crossref_primary_10_1016_j_ins_2024_120252
crossref_primary_10_1016_j_segan_2025_101962
crossref_primary_10_1016_j_enbuild_2024_113886
crossref_primary_10_3390_en16124694
crossref_primary_10_1016_j_ijepes_2023_109630
crossref_primary_10_1109_TIA_2024_3429068
crossref_primary_10_1007_s00202_023_02048_2
crossref_primary_10_1016_j_ijepes_2023_109507
crossref_primary_10_1016_j_est_2022_104630
crossref_primary_10_1016_j_ijepes_2022_108851
crossref_primary_10_1016_j_rser_2025_115395
crossref_primary_10_3390_en15249514
crossref_primary_10_1016_j_egyr_2022_08_184
crossref_primary_10_1088_1742_6596_2704_1_012007
crossref_primary_10_1016_j_jclepro_2024_144073
crossref_primary_10_1016_j_scs_2023_105120
crossref_primary_10_1016_j_est_2024_111084
crossref_primary_10_1515_ijeeps_2023_0416
crossref_primary_10_1016_j_enbuild_2023_113335
crossref_primary_10_3390_su141811773
crossref_primary_10_1016_j_segan_2024_101330
crossref_primary_10_1016_j_ijepes_2025_110989
crossref_primary_10_1016_j_ijepes_2022_108503
crossref_primary_10_1049_rpg2_12713
crossref_primary_10_3390_en16114443
crossref_primary_10_1016_j_est_2022_106025
crossref_primary_10_1007_s00202_023_01906_3
crossref_primary_10_1016_j_est_2024_111818
crossref_primary_10_1016_j_ijhydene_2022_07_255
crossref_primary_10_1016_j_renene_2024_121123
crossref_primary_10_1016_j_energy_2024_130826
crossref_primary_10_3390_su151612452
crossref_primary_10_1007_s00202_022_01599_0
crossref_primary_10_1049_rpg2_12838
crossref_primary_10_1016_j_est_2023_108065
crossref_primary_10_1016_j_est_2024_114121
crossref_primary_10_1016_j_segan_2024_101286
crossref_primary_10_1016_j_energy_2024_130391
crossref_primary_10_1016_j_jclepro_2023_137632
crossref_primary_10_1016_j_est_2023_107933
crossref_primary_10_1016_j_scs_2023_104535
crossref_primary_10_3390_buildings14051197
crossref_primary_10_12677_mos_2025_141014
crossref_primary_10_1016_j_energy_2024_132794
crossref_primary_10_1007_s40866_024_00204_6
crossref_primary_10_1016_j_renene_2024_120681
crossref_primary_10_1016_j_est_2023_108130
crossref_primary_10_1016_j_est_2022_104739
crossref_primary_10_1007_s43621_024_00412_1
crossref_primary_10_1016_j_energy_2024_132284
crossref_primary_10_1177_01436244231170387
crossref_primary_10_1007_s00202_023_02013_z
crossref_primary_10_1016_j_renene_2025_124073
crossref_primary_10_1016_j_enconman_2025_120082
crossref_primary_10_3389_fenrg_2024_1384760
crossref_primary_10_1016_j_rser_2022_112854
crossref_primary_10_1016_j_applthermaleng_2024_123739
crossref_primary_10_1007_s00202_024_02555_w
crossref_primary_10_1007_s10098_023_02660_7
crossref_primary_10_1016_j_egyr_2022_06_028
crossref_primary_10_1016_j_egyr_2023_06_048
crossref_primary_10_1016_j_renene_2025_123373
crossref_primary_10_1016_j_enbuild_2022_112765
crossref_primary_10_1016_j_ijhydene_2023_03_124
crossref_primary_10_1016_j_est_2022_104397
crossref_primary_10_1016_j_ijepes_2022_108499
crossref_primary_10_1155_2023_1964666
crossref_primary_10_1049_rpg2_12984
crossref_primary_10_1016_j_enbuild_2022_112764
crossref_primary_10_3390_su15010809
crossref_primary_10_3390_su15097157
crossref_primary_10_1049_rpg2_12869
crossref_primary_10_1109_ACCESS_2024_3391417
crossref_primary_10_1016_j_segan_2025_101658
crossref_primary_10_1016_j_apenergy_2023_121430
crossref_primary_10_1016_j_energy_2023_127699
crossref_primary_10_1016_j_apenergy_2023_120984
crossref_primary_10_1016_j_energy_2023_127697
crossref_primary_10_1016_j_est_2022_104719
crossref_primary_10_1016_j_est_2022_105009
crossref_primary_10_1016_j_scs_2022_103945
crossref_primary_10_1016_j_heliyon_2024_e33018
crossref_primary_10_1016_j_scs_2023_104801
crossref_primary_10_1016_j_est_2022_104841
crossref_primary_10_1016_j_jclepro_2024_141308
crossref_primary_10_1016_j_ijepes_2022_108787
crossref_primary_10_3390_wevj14030072
crossref_primary_10_1016_j_ijepes_2022_108708
crossref_primary_10_1016_j_est_2024_113476
crossref_primary_10_1007_s10462_023_10441_3
crossref_primary_10_1016_j_energy_2025_135782
crossref_primary_10_1016_j_energy_2025_136594
crossref_primary_10_1016_j_epsr_2023_109353
crossref_primary_10_1016_j_gloei_2025_01_004
crossref_primary_10_1016_j_est_2023_108700
crossref_primary_10_1016_j_ijepes_2023_109132
Cites_doi 10.1016/j.jclepro.2020.121079
10.1016/j.energy.2019.02.021
10.1049/iet-gtd.2018.6328
10.1016/j.applthermaleng.2018.12.108
10.1016/j.apenergy.2019.114390
10.1016/j.energy.2020.116931
10.1016/j.segan.2019.100274
10.1109/TPWRS.2021.3057724
10.1016/j.apenergy.2019.114393
10.1016/j.ijepes.2020.106030
10.3390/en11092278
10.1109/TSTE.2018.2878230
10.1016/j.energy.2021.120105
10.1109/ACCESS.2020.3026049
10.1016/j.segan.2019.100268
10.1016/j.energy.2020.118124
10.1109/TSG.2015.2390640
10.1109/TII.2019.2938444
10.1016/j.segan.2020.100428
10.1155/2019/4243853
10.1049/iet-rpg.2018.6018
10.3390/en11051050
10.1049/iet-rpg.2018.6005
10.1016/j.apenergy.2019.114195
10.1016/j.scs.2021.103136
10.1109/EEEIC/ICPSEurope51590.2021.9584609
10.1109/TR.2018.2837114
10.1049/iet-rpg.2016.0397
10.1016/j.applthermaleng.2019.113825
10.1016/j.energy.2018.08.046
10.1109/ACCESS.2020.3024846
10.1016/j.ijepes.2016.01.044
10.1016/j.ijepes.2014.03.038
10.1109/PESGM.2018.8586246
10.1109/EEEIC.2019.8783452
10.1016/j.epsr.2019.106082
10.1002/tee.22819
10.1016/j.enconman.2018.12.073
10.1109/PESGM40551.2019.8973885
10.1016/j.ijepes.2021.107912
10.1109/TIE.2020.2978707
10.1109/TR.2017.2740158
10.1016/j.egypro.2018.11.260
10.1109/TSTE.2019.2921110
10.1002/etep.2810
10.1016/j.egypro.2019.01.111
10.1016/j.epsr.2021.107183
10.1016/B978-0-12-823899-8.00011-X
10.1016/j.ijepes.2021.106803
10.1016/j.apenergy.2021.117837
10.1016/j.applthermaleng.2021.116837
10.1016/j.scs.2019.101998
10.1016/j.ijepes.2021.106904
10.1109/MPAE.2007.264850
10.1007/s40998-018-0138-5
10.1007/978-981-13-9783-7_19
10.1016/j.apenergy.2019.113372
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijepes.2022.108103
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijepes_2022_108103
S0142061522001454
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
ADVLN
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c352t-4cf2bcfed00a81392ebf2a44862d744423acf12b72ef2ca1eea2ac56e8164ede3
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792083500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Tue Nov 18 21:02:52 EST 2025
Sat Nov 29 03:56:18 EST 2025
Sat Oct 05 15:37:09 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Energy Storage Systems
Integrated Demand Response Programs
Wind Turbine
Stochastic Programming
Genetic Algorithm
Energy Hub Planning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-4cf2bcfed00a81392ebf2a44862d744423acf12b72ef2ca1eea2ac56e8164ede3
OpenAccessLink https://lutpub.lut.fi/handle/10024/163905
ParticipantIDs crossref_primary_10_1016_j_ijepes_2022_108103
crossref_citationtrail_10_1016_j_ijepes_2022_108103
elsevier_sciencedirect_doi_10_1016_j_ijepes_2022_108103
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Papadimitriou, Anastasiadis, Psomopoulos, Vokas (b0145) 2019; 157
Zhang, Cao, Gao, Wang, Zhang, Yousefi (b0225) 2020; 260
Shahrabi, Hakimi, Hasankhani, Derakhshan, Abdi (b0130) 2021; 26
Gao, Xue, Wen, Wang, Huang, Xue (b0150) 2018, 2018
Teh (b0170) 2018; 67
Zhao, Gu, Huo, Shen, Hernando-Gil (b0100) 2020; 16
Ghasemi, Aghaei, Gharehpetian, Safdarian (b0045) 2019; 13
Heidari, Mortazavi, Bansal (b0080) 2020; 261
Chen, Shen, Guo, Sun (b0245) 2019; 158
Pazouki, Haghifam, Moser (b0265) 2014; 61
Wang, Yang, Short, Yang (b0285) 2017; 11
Mohamad, Teh, Lai, Chen (b0165) 2018; 11
Li, Wang, Han, Zhao (b0140) 2019, 2019
Rahmatian, Shamim, Bahramara (b0105) 2021; 191
Geidl, Koeppel, Favre-Perrod, Klockl, Andersson, Frohlich (b0005) 2007; 5
Liu, Zhang, Wang, Wu (b0035) 2019; 182
Teh, Lai (b0175) 2019; 20
Javadi, Esmaeel Nezhad (bib316) 2019; 29
Jadidbonab, Dolatabadi, Mohammadi‐Ivatloo, Abapour, Asadi (b0040) 2019; 13
Jadidbonab, Mohammadi-Ivatloo, Marzband, Siano (b0115) 2021; 68
Roustaei, Niknam, Salari, Chabok, Sheikh, Kavousi-Fard (b0220) 2020; 195
Zhang, Shahidehpour, Alabdulwahab, Abusorrah (b0020) 2015; 6
Cao, Wang, Du, Nojavan, Jermsittiparsert, Ghadimi (b0075) 2019; 20
Jamalzadeh, Hajiseyed Mirzahosseini, Faghihi, Panahi (b0060) 2020; 54
Teh, Lai, Cheng (b0180) 2017; 66
Javadi, Azami, Monsef (bib318) 2009; 4
Jabir, Teh, Ishak, Abunima (b0160) 2018; 11
Mansouri, Ahmarinejad, Nematbakhsh, Javadi, Jordehi, Catalão (b0255) 2021
Senemar, Rastegar, Dabbaghjamanesh, Hatziargyriou (b0050) 2020; 11
Mohamad, Teh, Lai (b0200) 2021; 223
Bisht (b0310) 2013; 3
Monemi Bidgoli, Karimi, Jadid, Anvari-Moghaddam (b0135) 2021; 196
Mansouri, Ahmarinejad, Ansarian, Javadi, Catalao (b0260) 2020; 120
Khorasany, Najafi-Ghalelou, Razzaghi, Mohammadi-Ivatloo (b0110) 2021; 129
Mansouri, Ahmarinejad, Nematbakhsh, Javadi, Jordehi, Catalão (b0270) 2021; 102852
Huang, Du, Capuder, Zhang, Zhang, Strbac (b0025) 2021; 36
Cheng, Zhang, Kirschen, Huang, Kang (b0215) 2020; 261
Amir Mansouri, Javadi, Ahmarinejad, Nematbakhsh, Zare, Catalão (b0280) 2021; 47
Chen, Sun, Shen, Guo, Guo, Xia (b0250) 2019; 252
Khoo, Teh, Lai (b0190) 2020; 8
Lai, Teh (b0185) 2022; 305
Amiri S, Honarvar M, sadegheih A. Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance. Energy 2018;163:1093–114. 10.1016/j.energy.2018.08.046.
Mansouri SA, Ahmarinejad A, Javadi MS, Nezhad AE, Shafie-Khah M, Catalão JPS. Chapter 9 - Demand response role for enhancing the flexibility of local energy systems. In: Graditi G, Di Somma MBT-DER in LIES, editors., Elsevier; 2021, p. 279–313. 10.1016/B978-0-12-823899-8.00011-X.
Huang W, Zhang N, Yang J, Wang Y, Kang C. Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy. 2019 IEEE Power Energy Soc. Gen. Meet., 2020, p. 1–1. 10.1109/pesgm40551.2019.8973885.
Tian, Ebadi, Jermsittiparsert, Kadyrov, Ponomarev, Javanshir (b0125) 2019; 159
Huang, Zhang, Kang, Capuder, Holjevac, Kuzle (b0205) 2020; 179
Wang, Zhang, Ersoy, Sun, Bi (b0305) 2019; 2019
Fang J. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems. 2018 IEEE Power Energy Soc. Gen. Meet., 2018, p. 1–1. 10.1109/pesgm.2018.8586246.
Javadi MS, Anvari-Moghaddam A, Guerrero JM, Esmaeel Nezhad A, Lotfi M, Catalão JPS. Optimal Operation of an Energy Hub in the Presence of Uncertainties. Proc - 2019 IEEE Int Conf Environ Electr Eng 2019 IEEE Ind Commer Power Syst Eur EEEIC/I CPS Eur 2019 2019:1–4. 10.1109/EEEIC.2019.8783452.
Zhu X, Zhou M, Xiang Z, Zhang L, Sun Y, Li G. Research on optimal configuration of energy hub considering system flexibility. In: Xue Y, Zheng Y, Rahman S, editors. Lect. Notes Electr. Eng., vol. 585, Singapore: Springer Singapore; 2020, p. 243–57. 10.1007/978-981-13-9783-7_19.
Qiu, Wang, Huang, Xie (b0030) 2019; 14
Ahmarinejad (b0055) 2021; 74
Najafi-Ghalelou, Nojavan, Zare, Mohammadi-Ivatloo (b0065) 2019; 149
Wan, Zheng, Luan, Tian, Li, Ma (b0300) 2021; 47
Lu, Liu, Ma, Wang, Zhou, Feng (b0120) 2020; 259
Bahmani, Karimi, Jadid (b0085) 2021; 130
Karamdel, Moghaddam (b0070) 2019; 13
Rakipour, Barati (b0090) 2019; 173
Metwaly, Teh (b0195) 2020; 8
Mansouri SA, Nematbakhsh E, Javadi MS, Jordehi AR, Shafie-khah M, Catalão JPS. Resilience Enhancement via Automatic Switching considering Direct Load Control Program and Energy Storage Systems. 2021 IEEE Int. Conf. Environ. Electr. Eng. 2021 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur., 2021, p. 1–6. 10.1109/EEEIC/ICPSEurope51590.2021.9584609.
Javadi, Gough, Mansouri, Ahmarinejad, Nematbakhsh, Santos (bib317) 2022; 138
Honarmand, Ghaderi Shamim, Meyar-Naimi (b0155) 2021; 28
Pazouki, Haghifam (b0315) 2016; 80
Amiri, Niknam (b0235) 2019; 43
Mansouri, Ahmarinejad, Javadi, Catalão (b0295) 2020; 206
Cao, Wei, Wang, Mei, Shafie-Khah, Catalão (b0240) 2020; 11
10.1016/j.ijepes.2022.108103_b0015
Cheng (10.1016/j.ijepes.2022.108103_b0215) 2020; 261
Mansouri (10.1016/j.ijepes.2022.108103_b0295) 2020; 206
10.1016/j.ijepes.2022.108103_b0210
10.1016/j.ijepes.2022.108103_b0010
10.1016/j.ijepes.2022.108103_b0095
Cao (10.1016/j.ijepes.2022.108103_b0075) 2019; 20
10.1016/j.ijepes.2022.108103_b0290
Metwaly (10.1016/j.ijepes.2022.108103_b0195) 2020; 8
Heidari (10.1016/j.ijepes.2022.108103_b0080) 2020; 261
Huang (10.1016/j.ijepes.2022.108103_b0205) 2020; 179
Pazouki (10.1016/j.ijepes.2022.108103_b0265) 2014; 61
Bahmani (10.1016/j.ijepes.2022.108103_b0085) 2021; 130
Mohamad (10.1016/j.ijepes.2022.108103_b0200) 2021; 223
Amiri (10.1016/j.ijepes.2022.108103_b0235) 2019; 43
Mohamad (10.1016/j.ijepes.2022.108103_b0165) 2018; 11
Shahrabi (10.1016/j.ijepes.2022.108103_b0130) 2021; 26
Teh (10.1016/j.ijepes.2022.108103_b0170) 2018; 67
Monemi Bidgoli (10.1016/j.ijepes.2022.108103_b0135) 2021; 196
Jabir (10.1016/j.ijepes.2022.108103_b0160) 2018; 11
Ahmarinejad (10.1016/j.ijepes.2022.108103_b0055) 2021; 74
Javadi (10.1016/j.ijepes.2022.108103_bib318) 2009; 4
Cao (10.1016/j.ijepes.2022.108103_b0240) 2020; 11
Huang (10.1016/j.ijepes.2022.108103_b0025) 2021; 36
Mansouri (10.1016/j.ijepes.2022.108103_b0255) 2021
Khorasany (10.1016/j.ijepes.2022.108103_b0110) 2021; 129
Geidl (10.1016/j.ijepes.2022.108103_b0005) 2007; 5
Karamdel (10.1016/j.ijepes.2022.108103_b0070) 2019; 13
Mansouri (10.1016/j.ijepes.2022.108103_b0260) 2020; 120
Rahmatian (10.1016/j.ijepes.2022.108103_b0105) 2021; 191
Amir Mansouri (10.1016/j.ijepes.2022.108103_b0280) 2021; 47
Ghasemi (10.1016/j.ijepes.2022.108103_b0045) 2019; 13
Jamalzadeh (10.1016/j.ijepes.2022.108103_b0060) 2020; 54
Liu (10.1016/j.ijepes.2022.108103_b0035) 2019; 182
Lu (10.1016/j.ijepes.2022.108103_b0120) 2020; 259
Mansouri (10.1016/j.ijepes.2022.108103_b0270) 2021; 102852
Javadi (10.1016/j.ijepes.2022.108103_bib316) 2019; 29
Teh (10.1016/j.ijepes.2022.108103_b0180) 2017; 66
Wang (10.1016/j.ijepes.2022.108103_b0305) 2019; 2019
Senemar (10.1016/j.ijepes.2022.108103_b0050) 2020; 11
Khoo (10.1016/j.ijepes.2022.108103_b0190) 2020; 8
10.1016/j.ijepes.2022.108103_b0275
Zhang (10.1016/j.ijepes.2022.108103_b0225) 2020; 260
10.1016/j.ijepes.2022.108103_b0230
Chen (10.1016/j.ijepes.2022.108103_b0245) 2019; 158
Teh (10.1016/j.ijepes.2022.108103_b0175) 2019; 20
Qiu (10.1016/j.ijepes.2022.108103_b0030) 2019; 14
Rakipour (10.1016/j.ijepes.2022.108103_b0090) 2019; 173
Bisht (10.1016/j.ijepes.2022.108103_b0310) 2013; 3
Li (10.1016/j.ijepes.2022.108103_b0140) 2019
Jadidbonab (10.1016/j.ijepes.2022.108103_b0115) 2021; 68
Tian (10.1016/j.ijepes.2022.108103_b0125) 2019; 159
Jadidbonab (10.1016/j.ijepes.2022.108103_b0040) 2019; 13
Honarmand (10.1016/j.ijepes.2022.108103_b0155) 2021; 28
Lai (10.1016/j.ijepes.2022.108103_b0185) 2022; 305
Chen (10.1016/j.ijepes.2022.108103_b0250) 2019; 252
Zhang (10.1016/j.ijepes.2022.108103_b0020) 2015; 6
Papadimitriou (10.1016/j.ijepes.2022.108103_b0145) 2019; 157
Gao (10.1016/j.ijepes.2022.108103_b0150) 2018
Javadi (10.1016/j.ijepes.2022.108103_bib317) 2022; 138
Pazouki (10.1016/j.ijepes.2022.108103_b0315) 2016; 80
Wang (10.1016/j.ijepes.2022.108103_b0285) 2017; 11
Zhao (10.1016/j.ijepes.2022.108103_b0100) 2020; 16
Najafi-Ghalelou (10.1016/j.ijepes.2022.108103_b0065) 2019; 149
Roustaei (10.1016/j.ijepes.2022.108103_b0220) 2020; 195
Wan (10.1016/j.ijepes.2022.108103_b0300) 2021; 47
References_xml – volume: 68
  start-page: 3124
  year: 2021
  end-page: 3136
  ident: b0115
  article-title: Short-Term Self-Scheduling of Virtual Energy Hub Plant Within Thermal Energy Market
  publication-title: IEEE Trans Ind Electron
– volume: 13
  start-page: 1177
  year: 2019
  end-page: 1189
  ident: b0045
  article-title: MILP model for integrated expansion planning of multi-carrier active energy systems
  publication-title: IET Gener Transm Distrib
– volume: 5
  start-page: 24
  year: 2007
  end-page: 30
  ident: b0005
  article-title: Energy hubs for the future
  publication-title: IEEE Power Energy Mag
– volume: 260
  year: 2020
  ident: b0225
  article-title: Optimum design of a multi-form energy hub by applying particle swarm optimization
  publication-title: J Clean Prod
– volume: 16
  start-page: 3460
  year: 2020
  end-page: 3469
  ident: b0100
  article-title: Two-Stage Distributionally Robust Optimization for Energy Hub Systems
  publication-title: IEEE Trans Ind Informatics
– volume: 157
  start-page: 939
  year: 2019
  end-page: 944
  ident: b0145
  article-title: Demand response schemes in energy hubs: A comparison study
  publication-title: Energy Procedia
– volume: 206
  year: 2020
  ident: b0295
  article-title: Two-stage stochastic framework for energy hubs planning considering demand response programs
  publication-title: Energy
– volume: 47
  year: 2021
  ident: b0280
  article-title: A coordinated energy management framework for industrial, residential and commercial energy hubs considering demand response programs
  publication-title: Sustain Energy Technol Assessments
– volume: 223
  year: 2021
  ident: b0200
  article-title: Optimum allocation of battery energy storage systems for power grid enhanced with solar energy
  publication-title: Energy
– volume: 138
  year: 2022
  ident: bib317
  article-title: A two-stage joint operation and planning model for sizing and siting of electrical energy storage devices considering demand response programs
  publication-title: Int J Electr Power Energy Syst
– reference: Mansouri SA, Ahmarinejad A, Javadi MS, Nezhad AE, Shafie-Khah M, Catalão JPS. Chapter 9 - Demand response role for enhancing the flexibility of local energy systems. In: Graditi G, Di Somma MBT-DER in LIES, editors., Elsevier; 2021, p. 279–313. 10.1016/B978-0-12-823899-8.00011-X.
– volume: 26
  start-page: 100428
  year: 2021
  ident: b0130
  article-title: Developing optimal energy management of energy hub in the presence of stochastic renewable energy resources
  publication-title: Sustain Energy, Grids Networks
– reference: Fang J. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems. 2018 IEEE Power Energy Soc. Gen. Meet., 2018, p. 1–1. 10.1109/pesgm.2018.8586246.
– volume: 11
  start-page: 2278
  year: 2018
  ident: b0165
  article-title: Development of Energy Storage Systems for Power Network Reliability
  publication-title: A Review Energies
– volume: 47
  year: 2021
  ident: b0300
  article-title: Assessment of wind energy resources in the urat area using optimized weibull distribution
  publication-title: Sustain Energy Technol Assessments
– volume: 29
  year: 2019
  ident: bib316
  article-title: Multi-objective, multi-year dynamic generation and transmission expansion planning- renewable energy sources integration for Iran’s National Power Grid
  publication-title: Int Transactions Electr Energy Syst
– volume: 4
  start-page: 199
  year: 2009
  end-page: 205
  ident: bib318
  article-title: Security constrained unit commitment of interconnected power systems
  publication-title: Int Rev Electr Eng
– start-page: 282
  year: 2018, 2018,
  end-page: 287
  ident: b0150
  article-title: Planning of Energy Hubs with Demand Side Management in Integrated Electricity-Gas Energy Systems
  publication-title: Int Conf Innov Smart Grid Technol ISGT Asia
– volume: 43
  start-page: 517
  year: 2019
  end-page: 526
  ident: b0235
  article-title: Optimal Planning of a Multi-carrier Energy Hub Using the Modified Bird Mating Optimizer
  publication-title: Iran J Sci Technol - Trans Electr Eng
– volume: 120
  year: 2020
  ident: b0260
  article-title: Stochastic planning and operation of energy hubs considering demand response programs using Benders decomposition approach
  publication-title: Int J Electr Power Energy Syst
– volume: 11
  start-page: 490
  year: 2017
  end-page: 500
  ident: b0285
  article-title: Chance constrained unit commitment considering comprehensive modelling of demand response resources
  publication-title: IET Renew Power Gener
– volume: 261
  year: 2020
  ident: b0215
  article-title: Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China
  publication-title: Appl Energy
– volume: 11
  start-page: 1236
  year: 2020
  end-page: 1246
  ident: b0050
  article-title: Dynamic Structural Sizing of Residential Energy Hubs
  publication-title: IEEE Trans Sustain Energy
– volume: 11
  start-page: 1050
  year: 2018
  ident: b0160
  article-title: Impacts of Demand-Side Management on Electrical Power Systems
  publication-title: A Review Energies
– start-page: 4214
  year: 2019, 2019,
  end-page: 4219
  ident: b0140
  article-title: Generalized Modeling and Coordinated Management of Energy Hub Incorporating Wind Power and Demand Response
  publication-title: Proc 31st Chinese Control Decis Conf CCDC
– volume: 13
  start-page: 998
  year: 2019
  end-page: 1008
  ident: b0040
  article-title: Risk-constrained energy management of PV integrated smart energy hub in the presence of demand response program and compressed air energy storage
  publication-title: IET Renew Power Gener
– volume: 159
  start-page: 113825
  year: 2019
  ident: b0125
  article-title: Risk-based stochastic scheduling of energy hub system in the presence of heating network and thermal energy management
  publication-title: Appl Therm Eng
– volume: 261
  start-page: 114393
  year: 2020
  ident: b0080
  article-title: Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies
  publication-title: Appl Energy
– reference: Amiri S, Honarvar M, sadegheih A. Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance. Energy 2018;163:1093–114. 10.1016/j.energy.2018.08.046.
– reference: Javadi MS, Anvari-Moghaddam A, Guerrero JM, Esmaeel Nezhad A, Lotfi M, Catalão JPS. Optimal Operation of an Energy Hub in the Presence of Uncertainties. Proc - 2019 IEEE Int Conf Environ Electr Eng 2019 IEEE Ind Commer Power Syst Eur EEEIC/I CPS Eur 2019 2019:1–4. 10.1109/EEEIC.2019.8783452.
– volume: 196
  start-page: 107183
  year: 2021
  ident: b0135
  article-title: Stochastic electrical and thermal energy management of energy hubs integrated with demand response programs and renewable energy: A prioritized multi-objective framework
  publication-title: Electr Power Syst Res
– volume: 74
  start-page: 103136
  year: 2021
  ident: b0055
  article-title: A Multi-objective Optimization Framework for Dynamic Planning of Energy Hub Considering Integrated Demand Response Program
  publication-title: Sustain Cities Soc
– volume: 259
  start-page: 114195
  year: 2020
  ident: b0120
  article-title: A robust optimization approach for optimal load dispatch of community energy hub
  publication-title: Appl Energy
– volume: 252
  year: 2019
  ident: b0250
  article-title: Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model
  publication-title: Appl Energy
– volume: 129
  start-page: 106803
  year: 2021
  ident: b0110
  article-title: Transactive energy framework for optimal energy management of multi-carrier energy hubs under local electrical, thermal, and cooling market constraints
  publication-title: Int J Electr Power Energy Syst
– volume: 191
  start-page: 116837
  year: 2021
  ident: b0105
  article-title: Optimal operation of the energy hubs in the islanded multi-carrier energy system using Cournot model
  publication-title: Appl Therm Eng
– volume: 28
  start-page: 100526
  year: 2021
  ident: b0155
  article-title: A robust optimization framework for energy hub operation considering different time resolutions: A real case study. Sustain Energy, Grids
  publication-title: Networks
– volume: 8
  start-page: 181547
  year: 2020
  end-page: 181559
  ident: b0195
  article-title: Probabilistic Peak Demand Matching by Battery Energy Storage Alongside Dynamic Thermal Ratings and Demand Response for Enhanced Network Reliability
  publication-title: IEEE Access
– volume: 2019
  start-page: 4243853
  year: 2019
  ident: b0305
  article-title: An Improved Real-Coded Genetic Algorithm Using the Heuristical Normal Distribution and Direction-Based Crossover
  publication-title: Comput Intell Neurosci
– reference: Huang W, Zhang N, Yang J, Wang Y, Kang C. Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy. 2019 IEEE Power Energy Soc. Gen. Meet., 2020, p. 1–1. 10.1109/pesgm40551.2019.8973885.
– volume: 182
  start-page: 126
  year: 2019
  end-page: 142
  ident: b0035
  article-title: Standardized modelling and economic optimization of multi-carrier energy systems considering energy storage and demand response
  publication-title: Energy Convers Manag
– volume: 61
  start-page: 335
  year: 2014
  end-page: 345
  ident: b0265
  article-title: Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response
  publication-title: Int J Electr Power Energy Syst
– volume: 173
  start-page: 384
  year: 2019
  end-page: 399
  ident: b0090
  article-title: Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response
  publication-title: Energy
– volume: 67
  start-page: 1261
  year: 2018
  end-page: 1268
  ident: b0170
  article-title: Uncertainty Analysis of Transmission Line End-of-Life Failure Model for Bulk Electric System Reliability Studies
  publication-title: IEEE Trans Rel
– volume: 158
  start-page: 6496
  year: 2019
  end-page: 6501
  ident: b0245
  article-title: Robust planning-operation co-optimization of energy hub considering precise model of batteries’ economic efficiency
  publication-title: Energy Procedia
– volume: 179
  year: 2020
  ident: b0205
  article-title: Beijing subsidiary administrative center multi-energy systems: An optimal configuration planning
  publication-title: Electr Power Syst Res
– volume: 14
  start-page: 383
  year: 2019
  end-page: 393
  ident: b0030
  article-title: Optimal configuration and sizing of regional energy service company’s energy hub with integrated demand response
  publication-title: IEEJ Trans Electr Electron Eng
– volume: 130
  start-page: 106904
  year: 2021
  ident: b0085
  article-title: Cooperative energy management of multi-energy hub systems considering demand response programs and ice storage
  publication-title: Int J Electr Power Energy Syst
– volume: 13
  start-page: 2287
  year: 2019
  end-page: 2297
  ident: b0070
  article-title: Robust expansion co-planning of electricity and natural gas infrastructures for multi energy-hub systems with high penetration of renewable energy sources
  publication-title: IET Renew Power Gener
– volume: 80
  start-page: 219
  year: 2016
  end-page: 239
  ident: b0315
  article-title: Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty
  publication-title: Int J Electr Power Energy Syst
– volume: 8
  start-page: 175319
  year: 2020
  end-page: 175328
  ident: b0190
  article-title: Demand Response and Dynamic Line Ratings for Optimum Power Network Reliability and Ageing
  publication-title: IEEE Access
– reference: Mansouri SA, Nematbakhsh E, Javadi MS, Jordehi AR, Shafie-khah M, Catalão JPS. Resilience Enhancement via Automatic Switching considering Direct Load Control Program and Energy Storage Systems. 2021 IEEE Int. Conf. Environ. Electr. Eng. 2021 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur., 2021, p. 1–6. 10.1109/EEEIC/ICPSEurope51590.2021.9584609.
– volume: 11
  start-page: 3
  year: 2020
  end-page: 14
  ident: b0240
  article-title: Capacity Planning of Energy Hub in Multi-Carrier Energy Networks: A Data-Driven Robust Stochastic Programming Approach
  publication-title: IEEE Trans Sustain Energy
– volume: 20
  start-page: 100268
  year: 2019
  ident: b0175
  article-title: Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks
  publication-title: Sustain Energy, Grids Networks
– reference: Zhu X, Zhou M, Xiang Z, Zhang L, Sun Y, Li G. Research on optimal configuration of energy hub considering system flexibility. In: Xue Y, Zheng Y, Rahman S, editors. Lect. Notes Electr. Eng., vol. 585, Singapore: Springer Singapore; 2020, p. 243–57. 10.1007/978-981-13-9783-7_19.
– volume: 149
  start-page: 862
  year: 2019
  end-page: 880
  ident: b0065
  article-title: Robust scheduling of thermal, cooling and electrical hub energy system under market price uncertainty
  publication-title: Appl Therm Eng
– volume: 195
  year: 2020
  ident: b0220
  article-title: A scenario-based approach for the design of Smart Energy and Water Hub
  publication-title: Energy
– start-page: 1
  year: 2021
  end-page: 6
  ident: b0255
  article-title: Energy Hub Design in the Presence of P2G System Considering the Variable Efficiencies of Gas-Fired Converters
  publication-title: 2021 Int Conf Smart Energy Syst Technol
– volume: 54
  start-page: 101998
  year: 2020
  ident: b0060
  article-title: Optimal operation of energy hub system using hybrid stochastic-interval optimization approach
  publication-title: Sustainable Cities and Society
– volume: 20
  start-page: 100274
  year: 2019
  ident: b0075
  article-title: Optimal operation of CCHP and renewable generation-based energy hub considering environmental perspective: An epsilon constraint and fuzzy methods
  publication-title: Sustain Energy, Grids Networks
– volume: 66
  start-page: 1110
  year: 2017
  end-page: 1119
  ident: b0180
  article-title: Impact of the Real-Time Thermal Loading on the Bulk Electric System Reliability
  publication-title: IEEE Trans Reliab
– volume: 305
  year: 2022
  ident: b0185
  article-title: Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability
  publication-title: Appl Energy
– volume: 102852
  year: 2021
  ident: b0270
  article-title: Energy Management in Microgrids including Smart Homes: A Multi-objective Approach
  publication-title: Sustain Cities Soc
– volume: 6
  start-page: 2302
  year: 2015
  end-page: 2311
  ident: b0020
  article-title: Optimal Expansion Planning of Energy Hub with Multiple Energy Infrastructures
  publication-title: IEEE Trans Smart Grid
– volume: 36
  start-page: 3948
  year: 2021
  end-page: 3959
  ident: b0025
  article-title: Reliability and Vulnerability Assessment of Multi-Energy Systems: An Energy Hub Based Method
  publication-title: IEEE Trans Power Syst
– volume: 3
  start-page: 299
  year: 2013
  end-page: 304
  ident: b0310
  publication-title: Comparative Analysis of Real and Binary Coded Genetic Algorithm for Fuzzy Time Series Prediction Fuzzy time series View project
– volume: 260
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0225
  article-title: Optimum design of a multi-form energy hub by applying particle swarm optimization
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.121079
– volume: 173
  start-page: 384
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0090
  article-title: Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.021
– volume: 13
  start-page: 1177
  issue: 7
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0045
  article-title: MILP model for integrated expansion planning of multi-carrier active energy systems
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2018.6328
– volume: 149
  start-page: 862
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0065
  article-title: Robust scheduling of thermal, cooling and electrical hub energy system under market price uncertainty
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.12.108
– volume: 261
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0215
  article-title: Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114390
– volume: 195
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0220
  article-title: A scenario-based approach for the design of Smart Energy and Water Hub
  publication-title: Energy
  doi: 10.1016/j.energy.2020.116931
– volume: 20
  start-page: 100274
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0075
  article-title: Optimal operation of CCHP and renewable generation-based energy hub considering environmental perspective: An epsilon constraint and fuzzy methods
  publication-title: Sustain Energy, Grids Networks
  doi: 10.1016/j.segan.2019.100274
– volume: 36
  start-page: 3948
  issue: 5
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0025
  article-title: Reliability and Vulnerability Assessment of Multi-Energy Systems: An Energy Hub Based Method
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2021.3057724
– volume: 28
  start-page: 100526
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0155
  article-title: A robust optimization framework for energy hub operation considering different time resolutions: A real case study. Sustain Energy, Grids
  publication-title: Networks
– volume: 261
  start-page: 114393
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0080
  article-title: Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114393
– volume: 120
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0260
  article-title: Stochastic planning and operation of energy hubs considering demand response programs using Benders decomposition approach
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106030
– volume: 11
  start-page: 2278
  issue: 9
  year: 2018
  ident: 10.1016/j.ijepes.2022.108103_b0165
  article-title: Development of Energy Storage Systems for Power Network Reliability
  publication-title: A Review Energies
  doi: 10.3390/en11092278
– volume: 11
  start-page: 3
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0240
  article-title: Capacity Planning of Energy Hub in Multi-Carrier Energy Networks: A Data-Driven Robust Stochastic Programming Approach
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2878230
– volume: 223
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0200
  article-title: Optimum allocation of battery energy storage systems for power grid enhanced with solar energy
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120105
– volume: 8
  start-page: 175319
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0190
  article-title: Demand Response and Dynamic Line Ratings for Optimum Power Network Reliability and Ageing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026049
– volume: 20
  start-page: 100268
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0175
  article-title: Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks
  publication-title: Sustain Energy, Grids Networks
  doi: 10.1016/j.segan.2019.100268
– volume: 4
  start-page: 199
  issue: 2
  year: 2009
  ident: 10.1016/j.ijepes.2022.108103_bib318
  article-title: Security constrained unit commitment of interconnected power systems
  publication-title: Int Rev Electr Eng
– volume: 206
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0295
  article-title: Two-stage stochastic framework for energy hubs planning considering demand response programs
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118124
– volume: 6
  start-page: 2302
  issue: 5
  year: 2015
  ident: 10.1016/j.ijepes.2022.108103_b0020
  article-title: Optimal Expansion Planning of Energy Hub with Multiple Energy Infrastructures
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2390640
– volume: 16
  start-page: 3460
  issue: 5
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0100
  article-title: Two-Stage Distributionally Robust Optimization for Energy Hub Systems
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2019.2938444
– volume: 26
  start-page: 100428
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0130
  article-title: Developing optimal energy management of energy hub in the presence of stochastic renewable energy resources
  publication-title: Sustain Energy, Grids Networks
  doi: 10.1016/j.segan.2020.100428
– volume: 102852
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0270
  article-title: Energy Management in Microgrids including Smart Homes: A Multi-objective Approach
  publication-title: Sustain Cities Soc
– volume: 2019
  start-page: 4243853
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0305
  article-title: An Improved Real-Coded Genetic Algorithm Using the Heuristical Normal Distribution and Direction-Based Crossover
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2019/4243853
– volume: 13
  start-page: 998
  issue: 6
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0040
  article-title: Risk-constrained energy management of PV integrated smart energy hub in the presence of demand response program and compressed air energy storage
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2018.6018
– start-page: 282
  year: 2018
  ident: 10.1016/j.ijepes.2022.108103_b0150
  article-title: Planning of Energy Hubs with Demand Side Management in Integrated Electricity-Gas Energy Systems
  publication-title: Int Conf Innov Smart Grid Technol ISGT Asia
– volume: 11
  start-page: 1050
  issue: 5
  year: 2018
  ident: 10.1016/j.ijepes.2022.108103_b0160
  article-title: Impacts of Demand-Side Management on Electrical Power Systems
  publication-title: A Review Energies
  doi: 10.3390/en11051050
– volume: 13
  start-page: 2287
  issue: 13
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0070
  article-title: Robust expansion co-planning of electricity and natural gas infrastructures for multi energy-hub systems with high penetration of renewable energy sources
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2018.6005
– volume: 259
  start-page: 114195
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0120
  article-title: A robust optimization approach for optimal load dispatch of community energy hub
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114195
– volume: 47
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0280
  article-title: A coordinated energy management framework for industrial, residential and commercial energy hubs considering demand response programs
  publication-title: Sustain Energy Technol Assessments
– volume: 74
  start-page: 103136
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0055
  article-title: A Multi-objective Optimization Framework for Dynamic Planning of Energy Hub Considering Integrated Demand Response Program
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.103136
– ident: 10.1016/j.ijepes.2022.108103_b0290
  doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584609
– volume: 67
  start-page: 1261
  issue: 3
  year: 2018
  ident: 10.1016/j.ijepes.2022.108103_b0170
  article-title: Uncertainty Analysis of Transmission Line End-of-Life Failure Model for Bulk Electric System Reliability Studies
  publication-title: IEEE Trans Rel
  doi: 10.1109/TR.2018.2837114
– volume: 11
  start-page: 490
  year: 2017
  ident: 10.1016/j.ijepes.2022.108103_b0285
  article-title: Chance constrained unit commitment considering comprehensive modelling of demand response resources
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2016.0397
– volume: 159
  start-page: 113825
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0125
  article-title: Risk-based stochastic scheduling of energy hub system in the presence of heating network and thermal energy management
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.113825
– ident: 10.1016/j.ijepes.2022.108103_b0230
  doi: 10.1016/j.energy.2018.08.046
– volume: 8
  start-page: 181547
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0195
  article-title: Probabilistic Peak Demand Matching by Battery Energy Storage Alongside Dynamic Thermal Ratings and Demand Response for Enhanced Network Reliability
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024846
– volume: 80
  start-page: 219
  year: 2016
  ident: 10.1016/j.ijepes.2022.108103_b0315
  article-title: Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.01.044
– volume: 61
  start-page: 335
  year: 2014
  ident: 10.1016/j.ijepes.2022.108103_b0265
  article-title: Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.03.038
– ident: 10.1016/j.ijepes.2022.108103_b0010
  doi: 10.1109/PESGM.2018.8586246
– ident: 10.1016/j.ijepes.2022.108103_b0095
  doi: 10.1109/EEEIC.2019.8783452
– volume: 179
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0205
  article-title: Beijing subsidiary administrative center multi-energy systems: An optimal configuration planning
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2019.106082
– volume: 14
  start-page: 383
  issue: 3
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0030
  article-title: Optimal configuration and sizing of regional energy service company’s energy hub with integrated demand response
  publication-title: IEEJ Trans Electr Electron Eng
  doi: 10.1002/tee.22819
– volume: 182
  start-page: 126
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0035
  article-title: Standardized modelling and economic optimization of multi-carrier energy systems considering energy storage and demand response
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.12.073
– ident: 10.1016/j.ijepes.2022.108103_b0015
  doi: 10.1109/PESGM40551.2019.8973885
– volume: 138
  year: 2022
  ident: 10.1016/j.ijepes.2022.108103_bib317
  article-title: A two-stage joint operation and planning model for sizing and siting of electrical energy storage devices considering demand response programs
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107912
– volume: 68
  start-page: 3124
  issue: 4
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0115
  article-title: Short-Term Self-Scheduling of Virtual Energy Hub Plant Within Thermal Energy Market
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2978707
– volume: 66
  start-page: 1110
  year: 2017
  ident: 10.1016/j.ijepes.2022.108103_b0180
  article-title: Impact of the Real-Time Thermal Loading on the Bulk Electric System Reliability
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2017.2740158
– volume: 157
  start-page: 939
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0145
  article-title: Demand response schemes in energy hubs: A comparison study
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2018.11.260
– volume: 11
  start-page: 1236
  issue: 3
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0050
  article-title: Dynamic Structural Sizing of Residential Energy Hubs
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2921110
– start-page: 1
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0255
  article-title: Energy Hub Design in the Presence of P2G System Considering the Variable Efficiencies of Gas-Fired Converters
  publication-title: 2021 Int Conf Smart Energy Syst Technol
– volume: 29
  issue: 4
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_bib316
  article-title: Multi-objective, multi-year dynamic generation and transmission expansion planning- renewable energy sources integration for Iran’s National Power Grid
  publication-title: Int Transactions Electr Energy Syst
  doi: 10.1002/etep.2810
– volume: 158
  start-page: 6496
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0245
  article-title: Robust planning-operation co-optimization of energy hub considering precise model of batteries’ economic efficiency
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.111
– volume: 3
  start-page: 299
  year: 2013
  ident: 10.1016/j.ijepes.2022.108103_b0310
  publication-title: Comparative Analysis of Real and Binary Coded Genetic Algorithm for Fuzzy Time Series Prediction Fuzzy time series View project
– volume: 196
  start-page: 107183
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0135
  article-title: Stochastic electrical and thermal energy management of energy hubs integrated with demand response programs and renewable energy: A prioritized multi-objective framework
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2021.107183
– ident: 10.1016/j.ijepes.2022.108103_b0275
  doi: 10.1016/B978-0-12-823899-8.00011-X
– volume: 129
  start-page: 106803
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0110
  article-title: Transactive energy framework for optimal energy management of multi-carrier energy hubs under local electrical, thermal, and cooling market constraints
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.106803
– volume: 305
  year: 2022
  ident: 10.1016/j.ijepes.2022.108103_b0185
  article-title: Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117837
– volume: 191
  start-page: 116837
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0105
  article-title: Optimal operation of the energy hubs in the islanded multi-carrier energy system using Cournot model
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.116837
– volume: 54
  start-page: 101998
  year: 2020
  ident: 10.1016/j.ijepes.2022.108103_b0060
  article-title: Optimal operation of energy hub system using hybrid stochastic-interval optimization approach
  publication-title: Sustainable Cities and Society
  doi: 10.1016/j.scs.2019.101998
– volume: 130
  start-page: 106904
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0085
  article-title: Cooperative energy management of multi-energy hub systems considering demand response programs and ice storage
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.106904
– start-page: 4214
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0140
  article-title: Generalized Modeling and Coordinated Management of Energy Hub Incorporating Wind Power and Demand Response
  publication-title: Proc 31st Chinese Control Decis Conf CCDC
– volume: 5
  start-page: 24
  issue: 1
  year: 2007
  ident: 10.1016/j.ijepes.2022.108103_b0005
  article-title: Energy hubs for the future
  publication-title: IEEE Power Energy Mag
  doi: 10.1109/MPAE.2007.264850
– volume: 47
  year: 2021
  ident: 10.1016/j.ijepes.2022.108103_b0300
  article-title: Assessment of wind energy resources in the urat area using optimized weibull distribution
  publication-title: Sustain Energy Technol Assessments
– volume: 43
  start-page: 517
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0235
  article-title: Optimal Planning of a Multi-carrier Energy Hub Using the Modified Bird Mating Optimizer
  publication-title: Iran J Sci Technol - Trans Electr Eng
  doi: 10.1007/s40998-018-0138-5
– ident: 10.1016/j.ijepes.2022.108103_b0210
  doi: 10.1007/978-981-13-9783-7_19
– volume: 252
  year: 2019
  ident: 10.1016/j.ijepes.2022.108103_b0250
  article-title: Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113372
SSID ssj0007942
Score 2.6506813
Snippet •Developing a stochastic model for the joint planning and operation of energy hub.•Dividing the solution space into two stages to increase the solution...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108103
SubjectTerms Energy Hub Planning
Energy Storage Systems
Genetic Algorithm
Integrated Demand Response Programs
Stochastic Programming
Wind Turbine
Title A multi-stage joint planning and operation model for energy hubs considering integrated demand response programs
URI https://dx.doi.org/10.1016/j.ijepes.2022.108103
Volume 140
WOSCitedRecordID wos000792083500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007942
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9tAEF1cp4f2UPpJ04-wh96ChLWyLOkoSkIb0lBwCr6J1e6otkhkEbsm_6R_t7M7WkkhJW0KvQiz9kpi53k1M3rzhrEPRWlExFXkBSmAEdUuvFTLFLEMGA8lZSgLqzN7Gp-dJYtF-nU0-ulqYXYXcV0n19dp819NjWNobFM6ew9zdyfFAfyMRscjmh2Pf2X4jEiCHrp93-GwWq_qrekVbVsT2VcF6wZas9s2OCT6TSWAS9xGDBHd9vCkapdWTUIfari0XHQi1YJjdm2G7u3N_OJAlYK67VhANKYvm0Vce9HNQDTd5sZr80bBsgzmfuZ3kFxeSlOqWBEo-y_mS1hpCXbCcTd6IndS27Ev_twfJjcwLnbsrTbj5qpueooTJUGF6UgR3djFSfXp1hOBkhOVv6qgAaPPLoThVQaTsH8CdrxEQ3UT5szCUM0QuQ_YnoijNBmzvezz0eKke8jjNiaIHUu34qoyLXXw9rV-7_UMPJnzp-xJG4LwjKDzjI2gfs4eD4QpX7Am4wMQcQsi7kDEEQa8AxG3IOIIIk725AZEfAAi3oOIE4i4AxF3IHrJvh0fnX_85LW9OTyFLvvWm6pSFKoEPZnIBKMIAfivlxjrz4SOp1N00qUqA1HEAkqhZAAghVTRDBKMz0FD-IqN63UNrxlXopS46pFSWk_LmUqKWKLfquIIwrhQwT4L3drlqhWuN_1TLnLHUKxyWvHcrHhOK77PvG5WQ8Itf_h97MySt84nOZU5IunOmW_-eeZb9qgH_Ts23l79gPfsodptV5urgxZyvwCAKLHB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-stage+joint+planning+and+operation+model+for+energy+hubs+considering+integrated+demand+response+programs&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Mansouri%2C+S.A.&rft.au=Ahmarinejad%2C+A.&rft.au=Sheidaei%2C+F.&rft.au=Javadi%2C+M.S.&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.volume=140&rft_id=info:doi/10.1016%2Fj.ijepes.2022.108103&rft.externalDocID=S0142061522001454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon