Low-Dimensional Manifolds Support Multiplexed Integrations in Recurrent Neural Networks

We study the learning dynamics and the representations emerging in recurrent neural networks (RNNs) trained to integrate one or multiple temporal signals. Combining analytical and numerical investigations, we characterize the conditions under which an RNN with neurons learns to integrate scalar sign...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computation Ročník 33; číslo 4; s. 1
Hlavní autori: Fanthomme, Arnaud, Monasson, Rémi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 26.03.2021
ISSN:1530-888X, 1530-888X
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the learning dynamics and the representations emerging in recurrent neural networks (RNNs) trained to integrate one or multiple temporal signals. Combining analytical and numerical investigations, we characterize the conditions under which an RNN with neurons learns to integrate scalar signals of arbitrary duration. We show, for linear, ReLU, and sigmoidal neurons, that the internal state lives close to a -dimensional manifold, whose shape is related to the activation function. Each neuron therefore carries, to various degrees, information about the value of all integrals. We discuss the deep analogy between our results and the concept of mixed selectivity forged by computational neuroscientists to interpret cortical recordings.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-888X
1530-888X
DOI:10.1162/neco_a_01366