A Mirror Inertial Forward–Reflected–Backward Splitting: Convergence Analysis Beyond Convexity and Lipschitz Smoothness

This work investigates a Bregman and inertial extension of the forward–reflected–backward algorithm (Malitsky and Tam in SIAM J Optim 30:1451–1472, 2020) applied to structured nonconvex minimization problems under relative smoothness. To this end, the proposed algorithm hinges on two key features: t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 203; číslo 2; s. 1127 - 1159
Hlavní autoři: Wang, Ziyuan, Themelis, Andreas, Ou, Hongjia, Wang, Xianfu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2024
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work investigates a Bregman and inertial extension of the forward–reflected–backward algorithm (Malitsky and Tam in SIAM J Optim 30:1451–1472, 2020) applied to structured nonconvex minimization problems under relative smoothness. To this end, the proposed algorithm hinges on two key features: taking inertial steps in the dual space, and allowing for possibly negative inertial values. The interpretation of relative smoothness as a two-sided weak convexity condition proves beneficial in providing tighter stepsize ranges. Our analysis begins with studying an envelope function associated with the algorithm that takes inertial terms into account through a novel product space formulation. Such construction substantially differs from similar objects in the literature and could offer new insights for extensions of splitting algorithms. Global convergence and rates are obtained by appealing to the Kurdyka–Łojasiewicz property.
AbstractList This work investigates a Bregman and inertial extension of the forward–reflected–backward algorithm (Malitsky and Tam in SIAM J Optim 30:1451–1472, 2020) applied to structured nonconvex minimization problems under relative smoothness. To this end, the proposed algorithm hinges on two key features: taking inertial steps in the dual space, and allowing for possibly negative inertial values. The interpretation of relative smoothness as a two-sided weak convexity condition proves beneficial in providing tighter stepsize ranges. Our analysis begins with studying an envelope function associated with the algorithm that takes inertial terms into account through a novel product space formulation. Such construction substantially differs from similar objects in the literature and could offer new insights for extensions of splitting algorithms. Global convergence and rates are obtained by appealing to the Kurdyka–Łojasiewicz property.
Author Wang, Ziyuan
Themelis, Andreas
Ou, Hongjia
Wang, Xianfu
Author_xml – sequence: 1
  givenname: Ziyuan
  surname: Wang
  fullname: Wang, Ziyuan
  organization: Department of Mathematics, Irving K. Barber Faculty of Science, University of British Columbia
– sequence: 2
  givenname: Andreas
  surname: Themelis
  fullname: Themelis, Andreas
  organization: Faculty of Information Science and Electrical Engineering (ISEE), Kyushu University
– sequence: 3
  givenname: Hongjia
  surname: Ou
  fullname: Ou, Hongjia
  organization: Faculty of Information Science and Electrical Engineering (ISEE), Kyushu University
– sequence: 4
  givenname: Xianfu
  surname: Wang
  fullname: Wang, Xianfu
  email: shawn.wang@ubc.ca
  organization: Department of Mathematics, Irving K. Barber Faculty of Science, University of British Columbia
BookMark eNp9kEtOwzAQQC0EEm3hAqx8gYA_SRyzaysKlYqQKKwt15m0Lqld2eGTrrgDN-QkpJQ1i9H8_Eby66Nj5x0gdEHJJSVEXEVKZCYSwtIueMETeYR6NBM8YYUojlGPEMYSzrg8Rf0Y14QQWYi0h3ZDfG9D8AFPHYTG6hpPfHjXofz-_HqEqgbTwL4eafOyH-P5trZNY93yGo-9e4OwBGcAD52u22gjHkHrXXnYfdimxbrrZnYbzco2OzzfeN-sHMR4hk4qXUc4_8sD9Dy5eRrfJbOH2-l4OEsMz1iTpEYuiC5BZFqKii60AQms4plmkEohUqrzQldG6pxwDkJLmZZC5wta5h1G-ACxw10TfIwBKrUNdqNDqyhRe3vqYE919tSvPSU7iB-g2D12Swhq7V9D98f4H_UD5Wd57w
Cites_doi 10.1007/s10589-021-00273-8
10.1137/18M1207260
10.1007/978-3-319-48311-5
10.1137/17M1138558
10.1137/140957639
10.1007/s10589-022-00366-y
10.1007/s10107-015-0963-5
10.1137/S1052623402410557
10.1007/s10107-021-01618-1
10.1561/2400000003
10.1287/moor.2021.1227
10.1137/0803026
10.1287/moor.2019.1008
10.1142/S0219199701000524
10.1007/s10589-017-9915-8
10.1007/s10107-011-0484-9
10.1137/S0363012902407120
10.1137/18M1163993
10.1007/s10957-019-01477-z
10.1080/02331934.2018.1543295
10.1007/s10957-021-01820-3
10.1287/moor.2016.0817
10.1137/21M1420939
10.24033/bsmf.1625
10.1007/s10107-018-1284-2
10.1007/s10589-022-00364-0
10.1109/TAC.2018.2872203
10.1137/19M1264783
10.1137/140998135
10.1137/16M1099546
10.1007/s10957-023-02204-5
10.1007/s10107-019-01449-1
10.1016/S0167-6377(02)00231-6
10.1287/moor.1100.0449
10.1287/moor.2021.1214
10.1137/16M1080240
10.1016/j.na.2011.07.031
10.1007/s10898-023-01348-y
10.1109/CDC42340.2020.9304514
10.1007/978-3-319-91578-4_2
10.1007/978-3-319-92775-6
10.5802/afst.809
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10957-024-02383-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 1159
ExternalDocumentID 10_1007_s10957_024_02383_9
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c352t-4c9b0ade75a97f1bace9e2f35a2e497741a68afc9a6033e7a994d7a6b1d6ade03
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001167994900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Sat Nov 29 06:02:33 EST 2025
Fri Feb 21 02:36:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 49J53
Relative smoothness
49J52
Forward–reflected–backward splitting
Inertia
Mordukhovich limiting subdifferential
90C26
Bregman distance
Nonsmooth nonconvex optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-4c9b0ade75a97f1bace9e2f35a2e497741a68afc9a6033e7a994d7a6b1d6ade03
PageCount 33
ParticipantIDs crossref_primary_10_1007_s10957_024_02383_9
springer_journals_10_1007_s10957_024_02383_9
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References Hanzely, Richtarik, Xiao (CR20) 2021; 79
Parikh, Boyd (CR35) 2014; 1
Li, Liu, Pong (CR23) 2017; 68
Bauschke, Combettes (CR9) 2017
Böhm, Sedlmayer, Csetnek, Boţ (CR12) 2022; 4
Lu, Freund, Nesterov (CR27) 2018; 28
Bauschke, Combettes (CR8) 2003; 13
CR19
Themelis, Patrinos (CR42) 2020; 30
Dragomir, d’Aspremont, Bolte (CR17) 2021; 189
CR37
Attouch, Bolte, Svaiter (CR3) 2013; 137
Themelis, Stella, Patrinos (CR44) 2022; 82
Li, Pong (CR24) 2015; 25
CR11
CR33
Bauschke, Borwein, Combettes (CR6) 2001; 3
Moreau (CR31) 1965; 93
CR32
CR30
Themelis, Stella, Patrinos (CR43) 2018; 28
Wang, Wang (CR47) 2022; 82
Bauschke, Bolte, Teboulle (CR5) 2017; 42
Liu, Yin (CR26) 2019; 181
Bauschke, Borwein, Combettes (CR7) 2003; 42
Attouch, Bolte, Redont, Soubeyran (CR2) 2010; 35
Reem, Reich, De Pierro (CR36) 2019; 68
Ahookhosh, Themelis, Patrinos (CR1) 2021; 31
Stella, Themelis, Patrinos (CR38) 2018
Dragomir, Taylor, d’Aspremont, Bolte (CR18) 2022; 194
Chen, Teboulle (CR16) 1993; 3
CR4
Nesterov (CR34) 2021; 186
Beck, Teboulle (CR10) 2003; 31
László (CR22) 2023
Wang, Wang (CR46) 2022; 47
Li, Pong (CR25) 2016; 159
Malitsky, Tam (CR29) 2020; 30
CR45
CR21
Bolte, Sabach, Teboulle, Vaisbourd (CR13) 2018; 28
CR41
CR40
Boţ, Nguyen (CR15) 2020; 45
Teboulle (CR39) 2018; 170
Boţ, Dao, Li (CR14) 2022; 47
Mairal (CR28) 2015; 25
2383_CR4
R Dragomir (2383_CR18) 2022; 194
2383_CR19
HH Bauschke (2383_CR5) 2017; 42
HH Bauschke (2383_CR9) 2017
Y Malitsky (2383_CR29) 2020; 30
2383_CR32
H Attouch (2383_CR3) 2013; 137
2383_CR11
2383_CR33
HH Bauschke (2383_CR8) 2003; 13
A Themelis (2383_CR43) 2018; 28
SC László (2383_CR22) 2023
2383_CR37
R Dragomir (2383_CR17) 2021; 189
H Lu (2383_CR27) 2018; 28
J Mairal (2383_CR28) 2015; 25
Y Liu (2383_CR26) 2019; 181
2383_CR30
A Themelis (2383_CR42) 2020; 30
X Wang (2383_CR46) 2022; 47
D Reem (2383_CR36) 2019; 68
J Bolte (2383_CR13) 2018; 28
A Themelis (2383_CR44) 2022; 82
G Li (2383_CR24) 2015; 25
RI Boţ (2383_CR15) 2020; 45
RI Boţ (2383_CR14) 2022; 47
2383_CR21
2383_CR45
J Moreau (2383_CR31) 1965; 93
N Parikh (2383_CR35) 2014; 1
A Beck (2383_CR10) 2003; 31
M Ahookhosh (2383_CR1) 2021; 31
G Li (2383_CR25) 2016; 159
G Chen (2383_CR16) 1993; 3
2383_CR40
Y Nesterov (2383_CR34) 2021; 186
2383_CR41
M Teboulle (2383_CR39) 2018; 170
HH Bauschke (2383_CR7) 2003; 42
A Böhm (2383_CR12) 2022; 4
F Hanzely (2383_CR20) 2021; 79
H Attouch (2383_CR2) 2010; 35
G Li (2383_CR23) 2017; 68
L Stella (2383_CR38) 2018
X Wang (2383_CR47) 2022; 82
HH Bauschke (2383_CR6) 2001; 3
References_xml – ident: CR45
– volume: 79
  start-page: 405
  issue: 2
  year: 2021
  end-page: 440
  ident: CR20
  article-title: Accelerated Bregman proximal gradient methods for relatively smooth convex optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-021-00273-8
– volume: 30
  start-page: 1451
  issue: 2
  year: 2020
  end-page: 1472
  ident: CR29
  article-title: A forward-backward splitting method for monotone inclusions without cocoercivity
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1207260
– year: 2017
  ident: CR9
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  doi: 10.1007/978-3-319-48311-5
– volume: 28
  start-page: 2131
  issue: 3
  year: 2018
  end-page: 2151
  ident: CR13
  article-title: First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1138558
– volume: 25
  start-page: 829
  issue: 2
  year: 2015
  end-page: 855
  ident: CR28
  article-title: Incremental majorization-minimization optimization with application to large-scale machine learning
  publication-title: SIAM J. Optim.
  doi: 10.1137/140957639
– volume: 82
  start-page: 395
  year: 2022
  end-page: 440
  ident: CR44
  article-title: Douglas-Rachford splitting and ADMM for nonconvex optimization: accelerated and Newton-type algorithms
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-022-00366-y
– volume: 159
  start-page: 371
  issue: 1
  year: 2016
  end-page: 401
  ident: CR25
  article-title: Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0963-5
– ident: CR4
– ident: CR37
– ident: CR30
– volume: 13
  start-page: 1159
  issue: 4
  year: 2003
  end-page: 1173
  ident: CR8
  article-title: Iterating Bregman retractions
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402410557
– volume: 194
  start-page: 41
  issue: 1
  year: 2022
  end-page: 83
  ident: CR18
  article-title: Optimal complexity and certification of Bregman first-order methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-021-01618-1
– ident: CR33
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  end-page: 239
  ident: CR35
  publication-title: Proximal algorithms. Found. Trends Optim.
  doi: 10.1561/2400000003
– volume: 47
  start-page: 2765
  issue: 4
  year: 2022
  end-page: 2783
  ident: CR46
  article-title: The exact modulus of the generalized concave Kurdyka-Łojasiewicz property
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2021.1227
– volume: 3
  start-page: 538
  issue: 3
  year: 1993
  end-page: 543
  ident: CR16
  article-title: Convergence analysis of a proximal-like minimization algorithm using Bregman functions
  publication-title: SIAM J. Optim.
  doi: 10.1137/0803026
– volume: 45
  start-page: 682
  issue: 2
  year: 2020
  end-page: 712
  ident: CR15
  article-title: The proximal alternating direction method of multipliers in the nonconvex setting: convergence analysis and rates
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2019.1008
– volume: 3
  start-page: 615
  issue: 04
  year: 2001
  end-page: 647
  ident: CR6
  article-title: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199701000524
– volume: 68
  start-page: 407
  issue: 2
  year: 2017
  end-page: 436
  ident: CR23
  article-title: Peaceman-Rachford splitting for a class of nonconvex optimization problems
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9915-8
– volume: 137
  start-page: 91
  issue: 1
  year: 2013
  end-page: 129
  ident: CR3
  article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume: 42
  start-page: 596
  issue: 2
  year: 2003
  end-page: 636
  ident: CR7
  article-title: Bregman monotone optimization algorithms
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012902407120
– volume: 30
  start-page: 149
  issue: 1
  year: 2020
  end-page: 181
  ident: CR42
  article-title: Douglas-Rachford splitting and ADMM for nonconvex optimization: Tight convergence results
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1163993
– volume: 181
  start-page: 567
  issue: 2
  year: 2019
  end-page: 587
  ident: CR26
  article-title: An envelope for Davis-Yin splitting and strict saddle-point avoidance
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01477-z
– ident: CR40
– volume: 68
  start-page: 279
  issue: 1
  year: 2019
  end-page: 348
  ident: CR36
  article-title: Re-examination of Bregman functions and new properties of their divergences
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1543295
– volume: 189
  start-page: 341
  issue: 2
  year: 2021
  end-page: 363
  ident: CR17
  article-title: Quartic first-order methods for low-rank minimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-021-01820-3
– volume: 42
  start-page: 330
  issue: 2
  year: 2017
  end-page: 348
  ident: CR5
  article-title: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0817
– volume: 4
  start-page: 750
  issue: 2
  year: 2022
  end-page: 771
  ident: CR12
  article-title: Two steps at a time-taking GAN training in stride with Tseng’s method
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/21M1420939
– ident: CR21
– volume: 93
  start-page: 273
  year: 1965
  end-page: 299
  ident: CR31
  article-title: Proximité et dualité dans un espace hilbertien
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1625
– ident: CR19
– volume: 170
  start-page: 67
  issue: 1
  year: 2018
  end-page: 96
  ident: CR39
  article-title: A simplified view of first order methods for optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1284-2
– volume: 82
  start-page: 441
  issue: 2
  year: 2022
  end-page: 463
  ident: CR47
  article-title: Malitsky-Tam forward-reflected-backward splitting method for nonconvex minimization problems
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-022-00364-0
– year: 2018
  ident: CR38
  publication-title: Newton-type alternating minimization algorithm for convex optimization
  doi: 10.1109/TAC.2018.2872203
– volume: 31
  start-page: 653
  issue: 1
  year: 2021
  end-page: 685
  ident: CR1
  article-title: A Bregman forward-backward linesearch algorithm for nonconvex composite optimization: superlinear convergence to nonisolated local minima
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1264783
– volume: 25
  start-page: 2434
  issue: 4
  year: 2015
  end-page: 2460
  ident: CR24
  article-title: Global convergence of splitting methods for nonconvex composite optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/140998135
– volume: 28
  start-page: 333
  issue: 1
  year: 2018
  end-page: 354
  ident: CR27
  article-title: Relatively smooth convex optimization by first-order methods, and applications
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1099546
– year: 2023
  ident: CR22
  publication-title: A forward-backward algorithm with different inertial terms for structured non-convex minimization problems
  doi: 10.1007/s10957-023-02204-5
– volume: 186
  start-page: 157
  year: 2021
  end-page: 183
  ident: CR34
  article-title: Implementable tensor methods in unconstrained convex optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01449-1
– ident: CR11
– ident: CR32
– volume: 31
  start-page: 167
  issue: 3
  year: 2003
  end-page: 175
  ident: CR10
  article-title: Mirror descent and nonlinear projected subgradient methods for convex optimization
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00231-6
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  end-page: 457
  ident: CR2
  article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– ident: CR41
– volume: 47
  start-page: 2415
  issue: 3
  year: 2022
  end-page: 2443
  ident: CR14
  article-title: Extrapolated proximal subgradient algorithms for nonconvex and nonsmooth fractional programs
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2021.1214
– volume: 28
  start-page: 2274
  issue: 3
  year: 2018
  end-page: 2303
  ident: CR43
  article-title: Forward-backward envelope for the sum of two nonconvex functions: further properties and nonmonotone linesearch algorithms
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1080240
– volume: 186
  start-page: 157
  year: 2021
  ident: 2383_CR34
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01449-1
– volume: 82
  start-page: 441
  issue: 2
  year: 2022
  ident: 2383_CR47
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-022-00364-0
– ident: 2383_CR11
– ident: 2383_CR21
  doi: 10.1016/j.na.2011.07.031
– ident: 2383_CR45
  doi: 10.1007/s10898-023-01348-y
– volume: 31
  start-page: 167
  issue: 3
  year: 2003
  ident: 2383_CR10
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00231-6
– volume: 79
  start-page: 405
  issue: 2
  year: 2021
  ident: 2383_CR20
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-021-00273-8
– volume: 30
  start-page: 149
  issue: 1
  year: 2020
  ident: 2383_CR42
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1163993
– volume: 68
  start-page: 279
  issue: 1
  year: 2019
  ident: 2383_CR36
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1543295
– volume: 170
  start-page: 67
  issue: 1
  year: 2018
  ident: 2383_CR39
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1284-2
– ident: 2383_CR40
– volume: 42
  start-page: 596
  issue: 2
  year: 2003
  ident: 2383_CR7
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012902407120
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  ident: 2383_CR2
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  ident: 2383_CR35
  publication-title: Proximal algorithms. Found. Trends Optim.
  doi: 10.1561/2400000003
– volume: 13
  start-page: 1159
  issue: 4
  year: 2003
  ident: 2383_CR8
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402410557
– volume: 3
  start-page: 538
  issue: 3
  year: 1993
  ident: 2383_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/0803026
– ident: 2383_CR41
  doi: 10.1109/CDC42340.2020.9304514
– volume: 159
  start-page: 371
  issue: 1
  year: 2016
  ident: 2383_CR25
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0963-5
– volume: 31
  start-page: 653
  issue: 1
  year: 2021
  ident: 2383_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1264783
– volume: 3
  start-page: 615
  issue: 04
  year: 2001
  ident: 2383_CR6
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199701000524
– volume: 28
  start-page: 2274
  issue: 3
  year: 2018
  ident: 2383_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1080240
– volume: 25
  start-page: 829
  issue: 2
  year: 2015
  ident: 2383_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/140957639
– volume: 4
  start-page: 750
  issue: 2
  year: 2022
  ident: 2383_CR12
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/21M1420939
– volume: 189
  start-page: 341
  issue: 2
  year: 2021
  ident: 2383_CR17
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-021-01820-3
– volume: 45
  start-page: 682
  issue: 2
  year: 2020
  ident: 2383_CR15
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2019.1008
– volume: 68
  start-page: 407
  issue: 2
  year: 2017
  ident: 2383_CR23
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9915-8
– ident: 2383_CR37
– volume: 137
  start-page: 91
  issue: 1
  year: 2013
  ident: 2383_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– ident: 2383_CR33
  doi: 10.1007/978-3-319-91578-4_2
– volume: 82
  start-page: 395
  year: 2022
  ident: 2383_CR44
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-022-00366-y
– volume: 28
  start-page: 333
  issue: 1
  year: 2018
  ident: 2383_CR27
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1099546
– volume-title: A forward-backward algorithm with different inertial terms for structured non-convex minimization problems
  year: 2023
  ident: 2383_CR22
  doi: 10.1007/s10957-023-02204-5
– volume: 194
  start-page: 41
  issue: 1
  year: 2022
  ident: 2383_CR18
  publication-title: Math. Program.
  doi: 10.1007/s10107-021-01618-1
– volume: 42
  start-page: 330
  issue: 2
  year: 2017
  ident: 2383_CR5
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0817
– volume-title: Newton-type alternating minimization algorithm for convex optimization
  year: 2018
  ident: 2383_CR38
  doi: 10.1109/TAC.2018.2872203
– volume: 47
  start-page: 2765
  issue: 4
  year: 2022
  ident: 2383_CR46
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2021.1227
– volume: 47
  start-page: 2415
  issue: 3
  year: 2022
  ident: 2383_CR14
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2021.1214
– volume: 93
  start-page: 273
  year: 1965
  ident: 2383_CR31
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1625
– volume: 25
  start-page: 2434
  issue: 4
  year: 2015
  ident: 2383_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/140998135
– ident: 2383_CR30
  doi: 10.1007/978-3-319-92775-6
– ident: 2383_CR4
  doi: 10.5802/afst.809
– volume: 181
  start-page: 567
  issue: 2
  year: 2019
  ident: 2383_CR26
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01477-z
– ident: 2383_CR32
– volume: 28
  start-page: 2131
  issue: 3
  year: 2018
  ident: 2383_CR13
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1138558
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2017
  ident: 2383_CR9
  doi: 10.1007/978-3-319-48311-5
– ident: 2383_CR19
– volume: 30
  start-page: 1451
  issue: 2
  year: 2020
  ident: 2383_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1207260
SSID ssj0009874
Score 2.415803
Snippet This work investigates a Bregman and inertial extension of the forward–reflected–backward algorithm (Malitsky and Tam in SIAM J Optim 30:1451–1472, 2020)...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 1127
SubjectTerms Applications of Mathematics
Calculus of Variations and Optimal Control; Optimization
Engineering
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
Title A Mirror Inertial Forward–Reflected–Backward Splitting: Convergence Analysis Beyond Convexity and Lipschitz Smoothness
URI https://link.springer.com/article/10.1007/s10957-024-02383-9
Volume 203
WOSCitedRecordID wos001167994900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86fdAHv8Vv8uCbBtqmy4dvczgUtiGbDt9KmiawB9vRTpE9-T_4H_qXmGSt20AEfSlNewnl7po7cne_A-DcN04-jhlBIWXcXAKJYiE1kkkotccZ164ly6BNu1329MTvy6Kwosp2r0KSbqeeK3bjdYqMTUHWzmDEl8GKMXfMNmzo9QczqF1WYS8HCAeYl6UyP6-xaI4WY6HOxLQ2__dxW2CjdClhY6oD22BJpTtgfQ5o0Iw63-isxS6YNGBnmOdZDu9Sm1ZtJrey3KbPfr5_9JS2J_nK3l_bwz3zGPaNq-oSpK9g06apu4pNBStEEzitg5m-ezN-PRRm1B6OChulmMD-c2YUwm6qe-CxdfPQvEVlDwYkjWs2RqHksScSReuCU-0bOSquAo3rIlCh9R19QZjQkgviYayo4DxMqCCxnxAzzcP7oJZmqToAUCTEItNw6gkSUh4zX9OQaMlUEsRezA_BRSWKaDSF2ohmoMqWv5Hhb-T4Gxnqy0oSUfnbFb-QH_2N_BisBVaYrujwBNTG-Ys6BavydTws8jOnb18zGtPd
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBu3g3D75poJesSXybwzGxG7LNsbeSpgnswW60U2RP_gf_ob_EpBe3gQj6Upo2CeWc05yPnHO-AHBpa5DvhtRDmFCmL45AIRcKiQgLZTHKVHYkS98n7TYdDNhjURSWltnuZUgyW6nnit1YlSDtU5DxMy5iy2AFa49lGPM73f6MapeW3MsOch2XFaUyP8-x6I4WY6GZi2ls_e_jtsFmASlhLbeBHbAk412wMUc0qFutb3bWdA9Ma7A1TJJRAu9jk1atBzdGiUmf_Xz_6EhldvKlub81m3v6MexqqJolSN_AuklTzyo2JSwZTWBeB5O_e9O4HnLd8ofj1EQpprD7PNIGYRbVffDUuOvVm6g4gwEJDc0mCAsWWjySpMoZUbbWo2TSUW6VOxIb7Ghzj3IlGPcs15WEM4Yjwr3Qjjw9zHIPQCUexfIQQB55hpmGEYt7mLCQ2opgTwkqIye0QnYErkpVBOOcaiOYkSob-QZavkEm30D3vi41ERS_XfpL9-O_db8Aa81eyw_8-_bDCVh3jGKzAsRTUJkkL_IMrIrXyTBNzjPb-wIrXdbB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBu3g3D75pWG9rEt_mdDjcxnA69lbSNIE92I62iuzJ_-A_9JeY9OI2EEF8KU17Uso5pz0nyfm-AHBuqiTf9omLHEyoOlgc-YxLxAOHS4MSKrMtWQZt3O2S4ZD2ZlD8WbV7uSSZYxo0S1OYVseBrM4A32gNIxVfkI45NqKLYMnRhfR6vN4fTGl3ScnDbCHbsmkBm_n5GfOhaX5dNAs3zY3_v-gmWC9STVjPfWMLLIhwG6zNEBCqVuebtTXZAZM67IziOIphK9Tl1qpzM4p1We3n-8eDkHqGX-jzaz3ppy7Dvkphs8LpK9jQ5esZklPAkukE5viY_N6byvchU632aJzo1YsJ7D9HylH0z3YXPDVvHxt3qNibAXGVsqXI4dQ3WCBwjVEsTWVfQYUl7RqzhKNzSpO5hElOmWvYtsCMUifAzPXNwFXdDHsPVMIoFPsAssDVjDUUG8x1MPWJKbHjSk5EYPmGTw_ARWkWb5xTcHhTsmWtX0_p18v06ynpy9IqXvE5Jr-IH_5N_Ays9G6aXrvVvT8Cq5a2a4ZLPAaVNH4RJ2CZv6ajJD7N3PALFrTfpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mirror+Inertial+Forward%E2%80%93Reflected%E2%80%93Backward+Splitting%3A+Convergence+Analysis+Beyond+Convexity+and+Lipschitz+Smoothness&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Wang%2C+Ziyuan&rft.au=Themelis%2C+Andreas&rft.au=Ou%2C+Hongjia&rft.au=Wang%2C+Xianfu&rft.date=2024-11-01&rft.pub=Springer+US&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=203&rft.issue=2&rft.spage=1127&rft.epage=1159&rft_id=info:doi/10.1007%2Fs10957-024-02383-9&rft.externalDocID=10_1007_s10957_024_02383_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon