A Mirror Inertial Forward–Reflected–Backward Splitting: Convergence Analysis Beyond Convexity and Lipschitz Smoothness

This work investigates a Bregman and inertial extension of the forward–reflected–backward algorithm (Malitsky and Tam in SIAM J Optim 30:1451–1472, 2020) applied to structured nonconvex minimization problems under relative smoothness. To this end, the proposed algorithm hinges on two key features: t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 203; H. 2; S. 1127 - 1159
Hauptverfasser: Wang, Ziyuan, Themelis, Andreas, Ou, Hongjia, Wang, Xianfu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2024
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work investigates a Bregman and inertial extension of the forward–reflected–backward algorithm (Malitsky and Tam in SIAM J Optim 30:1451–1472, 2020) applied to structured nonconvex minimization problems under relative smoothness. To this end, the proposed algorithm hinges on two key features: taking inertial steps in the dual space, and allowing for possibly negative inertial values. The interpretation of relative smoothness as a two-sided weak convexity condition proves beneficial in providing tighter stepsize ranges. Our analysis begins with studying an envelope function associated with the algorithm that takes inertial terms into account through a novel product space formulation. Such construction substantially differs from similar objects in the literature and could offer new insights for extensions of splitting algorithms. Global convergence and rates are obtained by appealing to the Kurdyka–Łojasiewicz property.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-024-02383-9