Non-deterministic approximation fixpoint theory and its application in disjunctive logic programming

Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of nonmonotonic logics. It provides a unifying study of the semantics of different formalisms for nonmonotonic reasoning, such as logic programming, default logic and autoepistemic logic. In...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Artificial intelligence Ročník 331; s. 104110
Hlavní autori: Heyninck, Jesse, Arieli, Ofer, Bogaerts, Bart
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2024
Predmet:
ISSN:0004-3702, 1872-7921
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of nonmonotonic logics. It provides a unifying study of the semantics of different formalisms for nonmonotonic reasoning, such as logic programming, default logic and autoepistemic logic. In this paper, we extend AFT to dealing with non-deterministic constructs that allow to handle indefinite information, represented e.g. by disjunctive formulas. This is done by generalizing the main constructions and corresponding results of AFT to non-deterministic operators, whose ranges are sets of elements rather than single elements. The applicability and usefulness of this generalization is illustrated in the context of disjunctive logic programming.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2024.104110