Lower Bounds for Randomized and Quantum Query Complexity Using Kolmogorov Arguments

We prove a very general lower bound technique for quantum and randomized query complexity that is easy to prove as well as to apply. To achieve this, we introduce the use of Kolmogorov complexity to query complexity. Our technique generalizes the weighted and unweighted methods of Ambainis and the s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on computing Ročník 38; číslo 1; s. 46 - 62
Hlavní autori: Laplante, Sophie, Magniez, Frédéric
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2008
Predmet:
ISSN:0097-5397, 1095-7111
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove a very general lower bound technique for quantum and randomized query complexity that is easy to prove as well as to apply. To achieve this, we introduce the use of Kolmogorov complexity to query complexity. Our technique generalizes the weighted and unweighted methods of Ambainis and the spectral method of Barnum, Saks, and Szegedy. As an immediate consequence of our main theorem, it can be shown that adversary methods can only prove lower bounds for Boolean functions $f$ in $O(\min(\sqrt{n C_0(f)},\sqrt{n C_1(f)}))$, where $C_0, C_1$ is the certificate complexity and $n$ is the size of the input.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/050639090