Self-Adaptive Differential Evolution Applied to Real-Valued Antenna and Microwave Design Problems

Particle swarm optimization (PSO) is an evolutionary algorithm based on the bird fly. Differential evolution (DE) is a vector population based stochastic optimization method. The fact that both algorithms can handle efficiently arbitrary optimization problems has made them popular for solving proble...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation Vol. 59; no. 4; pp. 1286 - 1298
Main Authors: Goudos, S K, Siakavara, K, Samaras, T, Vafiadis, E E, Sahalos, J N
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.04.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-926X, 1558-2221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Particle swarm optimization (PSO) is an evolutionary algorithm based on the bird fly. Differential evolution (DE) is a vector population based stochastic optimization method. The fact that both algorithms can handle efficiently arbitrary optimization problems has made them popular for solving problems in electromagnetics. In this paper, we apply a design technique based on a self-adaptive DE (SADE) algorithm to real-valued antenna and microwave design problems. These include linear-array synthesis, patch-antenna design and microstrip filter design. The number of unknowns for the design problems varies from 6 to 60. We compare the self-adaptive DE strategy with popular PSO and DE variants. We evaluate the algorithms' performance regarding statistical results and convergence speed. The results obtained for different problems show that the DE algorithms outperform the PSO variants in terms of finding best optima. Thus, our results show the advantages of the SADE strategy and the DE in general. However, these results are considered to be indicative and do not generally apply to all optimization problems in electromagnetics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2011.2109678