Self-Adaptive Differential Evolution Applied to Real-Valued Antenna and Microwave Design Problems
Particle swarm optimization (PSO) is an evolutionary algorithm based on the bird fly. Differential evolution (DE) is a vector population based stochastic optimization method. The fact that both algorithms can handle efficiently arbitrary optimization problems has made them popular for solving proble...
Uloženo v:
| Vydáno v: | IEEE transactions on antennas and propagation Ročník 59; číslo 4; s. 1286 - 1298 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.04.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-926X, 1558-2221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Particle swarm optimization (PSO) is an evolutionary algorithm based on the bird fly. Differential evolution (DE) is a vector population based stochastic optimization method. The fact that both algorithms can handle efficiently arbitrary optimization problems has made them popular for solving problems in electromagnetics. In this paper, we apply a design technique based on a self-adaptive DE (SADE) algorithm to real-valued antenna and microwave design problems. These include linear-array synthesis, patch-antenna design and microstrip filter design. The number of unknowns for the design problems varies from 6 to 60. We compare the self-adaptive DE strategy with popular PSO and DE variants. We evaluate the algorithms' performance regarding statistical results and convergence speed. The results obtained for different problems show that the DE algorithms outperform the PSO variants in terms of finding best optima. Thus, our results show the advantages of the SADE strategy and the DE in general. However, these results are considered to be indicative and do not generally apply to all optimization problems in electromagnetics. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-926X 1558-2221 |
| DOI: | 10.1109/TAP.2011.2109678 |