An efficient finite element method and error analysis for eigenvalue problem of Schrödinger equation with an inverse square potential on spherical domain

We provide an effective finite element method to solve the Schrödinger eigenvalue problem with an inverse potential on a spherical domain. To overcome the difficulties caused by the singularities of coefficients, we introduce spherical coordinate transformation and transfer the singularities from th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations Jg. 2020; H. 1; S. 1 - 15
Hauptverfasser: Sui, Yubing, Zhang, Donghao, Cao, Junying, Zhang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 17.10.2020
SpringerOpen
Schlagworte:
ISSN:1687-1847, 1687-1847
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide an effective finite element method to solve the Schrödinger eigenvalue problem with an inverse potential on a spherical domain. To overcome the difficulties caused by the singularities of coefficients, we introduce spherical coordinate transformation and transfer the singularities from the interior of the domain to its boundary. Then by using orthogonal properties of spherical harmonic functions and variable separation technique we transform the original problem into a series of one-dimensional eigenvalue problems. We further introduce some suitable Sobolev spaces and derive the weak form and an efficient discrete scheme. Combining with the spectral theory of Babuška and Osborn for self-adjoint positive definite eigenvalue problems, we obtain error estimates of approximation eigenvalues and eigenvectors. Finally, we provide some numerical examples to show the efficiency and accuracy of the algorithm.
ISSN:1687-1847
1687-1847
DOI:10.1186/s13662-020-03034-9