DISA: a robust scheduling algorithm for scalable crosspoint-based switch fabrics

This paper presents and analyzes a high-performance, robust, and scalable scheduling algorithm for input-queued switches called distributed sequential allocation (DISA). In contrast to pointer-based arbitration schemes, the proposed algorithm is based on a synchronized output reservation process, wh...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal on selected areas in communications Ročník 21; číslo 4; s. 535 - 545
Hlavní autori: Elhanany, I., Sadot, D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0733-8716, 1558-0008
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents and analyzes a high-performance, robust, and scalable scheduling algorithm for input-queued switches called distributed sequential allocation (DISA). In contrast to pointer-based arbitration schemes, the proposed algorithm is based on a synchronized output reservation process, whereby each input selects a designated output while taking into consideration both local transmission requests and the availability of global resources. The distinctiveness of the algorithm lies in its ability to offer high performance when multiple cells are transmitted within each switching interval. Relaxed switching-time requirements allow for the incorporation of commercially available crosspoint switches. The result is a pragmatic and scalable solution for high port-density switching platforms. The efficiency of the scheme and its robustness in the presence of admissible traffic, without the need for speedup, is established through analysis and computer simulations. Performance results are shown for various traffic scenarios including nonuniform destination distribution, correlated arrivals and multiple classes of service.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2003.810535