Submodular Attribute Selection for Visual Recognition
In real-world visual recognition problems, low-level features cannot adequately characterize the semantic content in images, or the spatio-temporal structure in videos. In this work, we encode objects or actions based on attributes that describe them as high-level concepts. We consider two types of...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 39; no. 11; pp. 2242 - 2255 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In real-world visual recognition problems, low-level features cannot adequately characterize the semantic content in images, or the spatio-temporal structure in videos. In this work, we encode objects or actions based on attributes that describe them as high-level concepts. We consider two types of attributes. One type of attributes is generated by humans, while the second type is data-driven attributes extracted from data using dictionary learning methods. Attribute-based representation may exhibit variations due to noisy and redundant attributes. We propose a discriminative and compact attribute-based representation by selecting a subset of discriminative attributes from a large attribute set. Three attribute selection criteria are proposed and formulated as a submodular optimization problem. A greedy optimization algorithm is presented and its solution is guaranteed to be at least (1-1/e)-approximation to the optimum. Experimental results on four public datasets demonstrate that the proposed attribute-based representation significantly boosts the performance of visual recognition and outperforms most recently proposed recognition approaches. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-8828 1939-3539 2160-9292 1939-3539 |
| DOI: | 10.1109/TPAMI.2016.2636827 |