Mixed Finite Element Method for Dirichlet Boundary Control Problem Governed by Elliptic PDEs

In this paper we study the finite element approximation of Dirichlet boundary control problems governed by elliptic PDEs. Based on a mixed variational scheme, we establish a mixed finite element approximation to the underlying optimal control problem. We consider the optimal control problems posed o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on control and optimization Ročník 49; číslo 3; s. 984 - 1014
Hlavní autoři: Gong, Wei, Yan, Ningning
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2011
Témata:
ISSN:0363-0129, 1095-7138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we study the finite element approximation of Dirichlet boundary control problems governed by elliptic PDEs. Based on a mixed variational scheme, we establish a mixed finite element approximation to the underlying optimal control problem. We consider the optimal control problems posed on both polygonal and general smooth domains, and we derive a priori error estimates for optimal control, state, and adjoint state. The optimal and quasi-optimal error estimates are obtained for problems on polygonal and smooth domains, respectively. Numerical experiments are provided to confirm our theoretical results.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:0363-0129
1095-7138
DOI:10.1137/100795632