Mixed Finite Element Method for Dirichlet Boundary Control Problem Governed by Elliptic PDEs
In this paper we study the finite element approximation of Dirichlet boundary control problems governed by elliptic PDEs. Based on a mixed variational scheme, we establish a mixed finite element approximation to the underlying optimal control problem. We consider the optimal control problems posed o...
Uloženo v:
| Vydáno v: | SIAM journal on control and optimization Ročník 49; číslo 3; s. 984 - 1014 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.01.2011
|
| Témata: | |
| ISSN: | 0363-0129, 1095-7138 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we study the finite element approximation of Dirichlet boundary control problems governed by elliptic PDEs. Based on a mixed variational scheme, we establish a mixed finite element approximation to the underlying optimal control problem. We consider the optimal control problems posed on both polygonal and general smooth domains, and we derive a priori error estimates for optimal control, state, and adjoint state. The optimal and quasi-optimal error estimates are obtained for problems on polygonal and smooth domains, respectively. Numerical experiments are provided to confirm our theoretical results. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| ISSN: | 0363-0129 1095-7138 |
| DOI: | 10.1137/100795632 |