Monads need not be endofunctors

We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed lambda-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science Jg. 11, Issue 1
Hauptverfasser: Altenkirch, Thosten, Chapman, James, Uustalu, Tarmo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Logical Methods in Computer Science e.V 06.03.2015
Schlagworte:
ISSN:1860-5974, 1860-5974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed lambda-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions, relative monads are monoids in the functor category concerned and extend to monads, giving rise to a coreflection between relative monads and monads. Arrows are also an instance of relative monads.
ISSN:1860-5974
1860-5974
DOI:10.2168/LMCS-11(1:3)2015