Classification with Noisy Labels by Importance Reweighting
In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability <inline-formula><tex-math>...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 38; H. 3; S. 447 - 461 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability <inline-formula><tex-math>\rho \in [0,0.5)</tex-math> <inline-graphic xlink:type="simple" xlink:href="tao-ieq1-2456899.gif"/> </inline-formula>, and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate <inline-formula> <tex-math>\rho</tex-math> <inline-graphic xlink:type="simple" xlink:href="tao-ieq2-2456899.gif"/> </inline-formula>. We show that the rate is upper bounded by the conditional probability <inline-formula><tex-math> P(\hat{Y}|X)</tex-math> <inline-graphic xlink:type="simple" xlink:href="tao-ieq3-2456899.gif"/> </inline-formula> of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-8828 1939-3539 2160-9292 1939-3539 |
| DOI: | 10.1109/TPAMI.2015.2456899 |