Event-Triggered Distributed Stochastic Mirror Descent for Convex Optimization

This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-trig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 34; číslo 9; s. 6480 - 6491
Hlavní autoři: Xiong, Menghui, Zhang, Baoyong, Ho, Daniel W. C., Yuan, Deming, Xu, Shengyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3137010