Deep Stacked Sparse Autoencoders – A Breast Cancer Classifier

Breast cancer is among one of the non-communicable diseases that is the major cause of women's mortalities around the globe. Early diagnosis of breast cancer has significant death reduction effects. This chronic disease requires careful and lengthy prognostic procedures before reaching a ration...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mehran University research journal of engineering and technology Ročník 41; číslo 1; s. 41 - 52
Hlavní autori: Munir, Muhammad Asif, Aslam, Muhammad Aqeel, Shafique, Muhammad, Ahmed, Rauf, Mehmood, Zafar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Mehran University of Engineering and Technology 01.01.2022
Predmet:
ISSN:0254-7821, 2413-7219
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Breast cancer is among one of the non-communicable diseases that is the major cause of women's mortalities around the globe. Early diagnosis of breast cancer has significant death reduction effects. This chronic disease requires careful and lengthy prognostic procedures before reaching a rational decision about optimum clinical treatments. During the last decade, in Computer-Aided Diagnostic (CAD) systems, machine learning and deep learning-based approaches are being implemented to provide solutions with the least error probabilities in breast cancer screening practices. These methods are determined for optimal and acceptable results with little human intervention. In this article, Deep Stacked Sparse Autoencoders for breast cancer diagnostic and classification are proposed. Anticipated algorithms and methods are evaluated and tested using the platform of MATLAB R2017b on Breast Cancer Wisconsin (Diagnostic) Data Set (WDBC) and achieved results surpass all the CAD techniques and methods in terms of classification accuracy and efficiency.
AbstractList Breast cancer is among one of the non-communicable diseases that is the major cause of women's mortalities around the globe. Early diagnosis of breast cancer has significant death reduction effects. This chronic disease requires careful and lengthy prognostic procedures before reaching a rational decision about optimum clinical treatments. During the last decade, in Computer-Aided Diagnostic (CAD) systems, machine learning and deep learning-based approaches are being implemented to provide solutions with the least error probabilities in breast cancer screening practices. These methods are determined for optimal and acceptable results with little human intervention. In this article, Deep Stacked Sparse Autoencoders for breast cancer diagnostic and classification are proposed. Anticipated algorithms and methods are evaluated and tested using the platform of MATLAB R2017b on Breast Cancer Wisconsin (Diagnostic) Data Set (WDBC) and achieved results surpass all the CAD techniques and methods in terms of classification accuracy and efficiency. Keywords: Breast Cancer, Deep Stacked Autocoders, Diagnostic Systems,
Breast cancer is among one of the non-communicable diseases that is the major cause of women's mortalities around the globe. Early diagnosis of breast cancer has significant death reduction effects. This chronic disease requires careful and lengthy prognostic procedures before reaching a rational decision about optimum clinical treatments. During the last decade, in Computer-Aided Diagnostic (CAD) systems, machine learning and deep learning-based approaches are being implemented to provide solutions with the least error probabilities in breast cancer screening practices. These methods are determined for optimal and acceptable results with little human intervention. In this article, Deep Stacked Sparse Autoencoders for breast cancer diagnostic and classification are proposed. Anticipated algorithms and methods are evaluated and tested using the platform of MATLAB R2017b on Breast Cancer Wisconsin (Diagnostic) Data Set (WDBC) and achieved results surpass all the CAD techniques and methods in terms of classification accuracy and efficiency.
Audience Academic
Author Munir, Muhammad Asif
Shafique, Muhammad
Aslam, Muhammad Aqeel
Ahmed, Rauf
Mehmood, Zafar
Author_xml – sequence: 1
  givenname: Muhammad Asif
  surname: Munir
  fullname: Munir, Muhammad Asif
– sequence: 2
  givenname: Muhammad Aqeel
  surname: Aslam
  fullname: Aslam, Muhammad Aqeel
– sequence: 3
  givenname: Muhammad
  surname: Shafique
  fullname: Shafique, Muhammad
– sequence: 4
  givenname: Rauf
  surname: Ahmed
  fullname: Ahmed, Rauf
– sequence: 5
  givenname: Zafar
  surname: Mehmood
  fullname: Mehmood, Zafar
BookMark eNp1kc1OGzEUha0KpKaQB2A3EusJ_hnP2CsU0lKQkFgAa-uOfY0MyTiyzaK7vkPfkCfBJc2CqpUX9j0635GuzxdyMMUJCTlhdMG5VOxs84KFacXrSNmCyk9kxjsm2oEzfUBmlMuuHRRnn8k85ydKKetl1wsxI-dfEbfNXQH7jK6520LK2CxfSsTJRocpN68_fzXL5iIh5NKsYLKYmtUacg4-YDomhx7WGed_7iPycPntfnXV3tx-v14tb1orJCstOOuZ96pXXPIeQA5OgUcvhlGPWo3A3QiSejF6IaRzUB8dBQEDMrAcxRG53uW6CE9mm8IG0g8TIZh3IaZHA6kEu0YjqFCUYY9CYadAA0clnML6AQ68tjXrdJf1CNUeJh9LArsJ2Zplr7QeeqF5dS3-4arH4SbYWoAPVf8ADDvApphzQm9sKFBCnCoY1oZR896W2bdlfrdlqKwk-4vcL_h_5g3gtZo2
CitedBy_id crossref_primary_10_3390_cancers15143608
ContentType Journal Article
Copyright COPYRIGHT 2022 Mehran University of Engineering and Technology
Copyright_xml – notice: COPYRIGHT 2022 Mehran University of Engineering and Technology
CorporateAuthor Department of Electrical Engineering, Swedish College of Engineering and Technology, Rahim Yar Khan, Pakistan
CorporateAuthor_xml – name: Department of Electrical Engineering, Swedish College of Engineering and Technology, Rahim Yar Khan, Pakistan
DBID AAYXX
CITATION
DOA
DOI 10.22581/muet1982.2201.05
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2413-7219
EndPage 52
ExternalDocumentID oai_doaj_org_article_303801e6e38e48a9a2e83d8e782daf9c
A689976392
10_22581_muet1982_2201_05
GeographicLocations United States
Wisconsin
GeographicLocations_xml – name: Wisconsin
– name: United States
GroupedDBID 188
5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IAO
ITC
KQ8
OK1
RIG
ID FETCH-LOGICAL-c351t-adcf1ff8682526aa57d8afef37b9b98ba2dba50f3bf335dda3bf40a3a7e1ac2e3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000737275100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-7821
IngestDate Fri Oct 03 12:43:42 EDT 2025
Tue Nov 11 10:37:28 EST 2025
Tue Nov 04 17:18:55 EST 2025
Tue Nov 18 21:46:23 EST 2025
Sat Nov 29 01:33:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-adcf1ff8682526aa57d8afef37b9b98ba2dba50f3bf335dda3bf40a3a7e1ac2e3
OpenAccessLink https://doaj.org/article/303801e6e38e48a9a2e83d8e782daf9c
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_303801e6e38e48a9a2e83d8e782daf9c
gale_infotracmisc_A689976392
gale_infotracacademiconefile_A689976392
crossref_citationtrail_10_22581_muet1982_2201_05
crossref_primary_10_22581_muet1982_2201_05
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Mehran University research journal of engineering and technology
PublicationYear 2022
Publisher Mehran University of Engineering and Technology
Publisher_xml – name: Mehran University of Engineering and Technology
SSID ssj0001654633
Score 2.1827598
Snippet Breast cancer is among one of the non-communicable diseases that is the major cause of women's mortalities around the globe. Early diagnosis of breast cancer...
SourceID doaj
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 41
SubjectTerms Algorithms
Breast cancer
Cable television broadcasting industry
Cancer
Chronic diseases
Communicable diseases
Diagnosis
Machine learning
Mortality
United States
Wisconsin
Title Deep Stacked Sparse Autoencoders – A Breast Cancer Classifier
URI https://doaj.org/article/303801e6e38e48a9a2e83d8e782daf9c
Volume 41
WOSCitedRecordID wos000737275100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2413-7219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001654633
  issn: 0254-7821
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBZh6SE5lDZp6LZp0CEQKJi1JdmWT2WTZslpCSSBvYmxNIJAu1m23p77Dn3DPklnbO_ivbSX3PwzBmlGmtEnj74R4qJAAzVWIaFgaBIDqk4IZ9mkxFim3igVfWiLTZTzuV0sqrtBqS_OCevogTvFTcjFkhPFArVFY6EChVYHixTZAsTKs_dNy2oAptrdFT6j09WRJwSUkHDW_dKk4WuzyfcNNoS2Fd0yZ2e-F5Ra7v7eQw9izeyNeN0vEuW0a9xbcYDLY3E0oA48EV--Iq4kLRVpFgZ5vyJ8inK6aZ6ZmJKTk-WfX7_lVF5x0nkjr9m4a9mWwHyKFArficfZzcP1bdIXQ0i8zrMmgeBjFqMtCNKpAiAvg4WIUZd1VVe2BhVqyNOo66h1HgLQhUlBQ4kZeIX6VIyWz0t8L6QFJqWjharxqYHCWAJV6E2OdfS6wDgW6VYbzvdM4Vyw4psjxNAq0G0V6FiBLs3H4vPuk1VHk_Ev4StW8U6QGa7bB2R319vd_c_uY3HJBnI8D6lxHvrjBNRFZrRy04KQJDnPSo3F2Z4kzR8_eP3hJVrzURwqPhfR7s2ciVGz3uAn8cr_bJ5-rM_bsfkX24Pmxg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Stacked+Sparse+Autoencoders%E2%80%93A+Breast+Cancer+Classifier&rft.jtitle=Mehran+University+research+journal+of+engineering+and+technology&rft.au=Munir%2C+Muhammad+Asif&rft.au=Aslam%2C+Muhammad+Aqeel&rft.au=Shafique%2C+Muhammad&rft.au=Ahmed%2C+Rauf&rft.date=2022-01-01&rft.pub=Mehran+University+of+Engineering+and+Technology&rft.issn=0254-7821&rft.volume=41&rft.issue=1&rft.spage=41&rft_id=info:doi/10.22581%2Fmuet1982.2201.05&rft.externalDocID=A689976392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-7821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-7821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-7821&client=summon