Autoencoder Constrained Clustering With Adaptive Neighbors
The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address t...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 32; číslo 1; s. 443 - 449 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address this problem, in this brief, we embed the structured graph learning with adaptive neighbors into the deep autoencoder networks such that an adaptive deep clustering approach, namely, autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data via a parameter-free graph built upon deep features but also can iteratively strengthen the correlations among the deep representations in the learning process. In addition, the local structure of raw data is preserved by minimizing the reconstruction error. Compared to the state-of-the-art works, ACC_AN is the first deep clustering method embedded with the adaptive structured graph learning to update the latent representation of data and structured deep graph simultaneously. |
|---|---|
| AbstractList | The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address this problem, in this brief, we embed the structured graph learning with adaptive neighbors into the deep autoencoder networks such that an adaptive deep clustering approach, namely, autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data via a parameter-free graph built upon deep features but also can iteratively strengthen the correlations among the deep representations in the learning process. In addition, the local structure of raw data is preserved by minimizing the reconstruction error. Compared to the state-of-the-art works, ACC_AN is the first deep clustering method embedded with the adaptive structured graph learning to update the latent representation of data and structured deep graph simultaneously.The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address this problem, in this brief, we embed the structured graph learning with adaptive neighbors into the deep autoencoder networks such that an adaptive deep clustering approach, namely, autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data via a parameter-free graph built upon deep features but also can iteratively strengthen the correlations among the deep representations in the learning process. In addition, the local structure of raw data is preserved by minimizing the reconstruction error. Compared to the state-of-the-art works, ACC_AN is the first deep clustering method embedded with the adaptive structured graph learning to update the latent representation of data and structured deep graph simultaneously. The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address this problem, in this brief, we embed the structured graph learning with adaptive neighbors into the deep autoencoder networks such that an adaptive deep clustering approach, namely, autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data via a parameter-free graph built upon deep features but also can iteratively strengthen the correlations among the deep representations in the learning process. In addition, the local structure of raw data is preserved by minimizing the reconstruction error. Compared to the state-of-the-art works, ACC_AN is the first deep clustering method embedded with the adaptive structured graph learning to update the latent representation of data and structured deep graph simultaneously. |
| Author | Wang, Qi Li, Xuelong Zhang, Hongyuan Zhang, Rui |
| Author_xml | – sequence: 1 givenname: Xuelong orcidid: 0000-0003-2924-946X surname: Li fullname: Li, Xuelong email: xuelong_li@nwpu.edu.cn organization: School of Computer Science and the Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Rui orcidid: 0000-0001-9418-0863 surname: Zhang fullname: Zhang, Rui email: ruizhang8633@gmail.com organization: School of Computer Science and the Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Qi orcidid: 0000-0002-7028-4956 surname: Wang fullname: Wang, Qi email: crabwq@gmail.com organization: School of Computer Science and the Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Hongyuan orcidid: 0000-0003-4274-7332 surname: Zhang fullname: Zhang, Hongyuan email: hyzhang98@gmail.com organization: School of Computer Science and the Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32217483$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1PGzEQhq0KVCjlDxQJrcSllwR_7druLYrohxSFQ4PozfKuZ8FoY6e2F4l_X4eEHDjUl_HheWfemfcTOvLBA0JfCJ4SgtX1arlc_J5STPGUKiGZVB_QKSUNnVAm5dHhL_6coPOUnnB5Da4brj6iE0YpEVyyU_RtNuYAvgsWYjUPPuVonAdbzYcxZYjOP1T3Lj9WM2s22T1DtQT38NiGmD6j494MCc739Qzdfb9ZzX9OFrc_fs1ni0nHapInRpi256zMttjy1nDBleoaYaXBpKmltLJvreoMw5RzyvpOYagb0rZ9a6CR7Ax93fXdxPB3hJT12qUOhsF4CGPSZV9OCeZNXdCrd-hTGKMv7jTlolbFhBSFutxTY7sGqzfRrU180W9XKYDcAV0MKUXodeeyyS747XUGTbDeZqBfM9DbDPQ-gyKl76Rv3f8rutiJHAAcBApzQYqdf3m-kKY |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_119643 crossref_primary_10_1109_TAI_2021_3139573 crossref_primary_10_1016_j_asoc_2024_112256 crossref_primary_10_1016_j_neunet_2025_107504 crossref_primary_10_3390_math12101526 crossref_primary_10_3390_app15116177 crossref_primary_10_1109_TNNLS_2023_3281570 crossref_primary_10_1007_s10462_025_11349_w crossref_primary_10_1016_j_knosys_2024_112601 crossref_primary_10_1109_TCYB_2021_3065070 crossref_primary_10_3390_electronics12112489 crossref_primary_10_1109_TNNLS_2021_3056420 crossref_primary_10_1109_TNNLS_2024_3353217 crossref_primary_10_1109_ACCESS_2025_3568798 crossref_primary_10_1109_TNNLS_2021_3132918 crossref_primary_10_1016_j_engappai_2024_108612 crossref_primary_10_1109_TKDE_2023_3327043 crossref_primary_10_1016_j_ins_2022_07_177 crossref_primary_10_1109_TFUZZ_2024_3462545 crossref_primary_10_1007_s11263_022_01639_z crossref_primary_10_1016_j_neucom_2021_12_050 crossref_primary_10_1007_s10489_021_02558_1 crossref_primary_10_1016_j_knosys_2023_111100 crossref_primary_10_1016_j_neucom_2022_04_007 crossref_primary_10_1109_TNNLS_2024_3355928 crossref_primary_10_3390_su16219244 crossref_primary_10_1016_j_neucom_2021_06_011 crossref_primary_10_1109_TNNLS_2022_3190836 crossref_primary_10_1007_s00138_021_01223_4 crossref_primary_10_1007_s42979_021_00762_x crossref_primary_10_1109_TNNLS_2022_3224577 crossref_primary_10_1109_TNNLS_2021_3109953 crossref_primary_10_1109_TKDE_2022_3167996 crossref_primary_10_1007_s42979_021_00806_2 crossref_primary_10_1109_TKDE_2024_3437364 crossref_primary_10_1109_TKDE_2021_3076521 crossref_primary_10_1007_s10489_022_03551_y crossref_primary_10_1109_TNNLS_2023_3263195 crossref_primary_10_1155_2021_4935108 crossref_primary_10_1109_LSP_2022_3217441 crossref_primary_10_1109_LSP_2021_3116521 crossref_primary_10_1109_TGRS_2023_3267070 crossref_primary_10_1016_j_knosys_2022_108741 crossref_primary_10_1109_LSP_2022_3193631 crossref_primary_10_1016_j_patcog_2022_108768 crossref_primary_10_1109_TNNLS_2022_3158654 crossref_primary_10_1109_TCYB_2021_3125956 crossref_primary_10_1016_j_neucom_2022_09_087 crossref_primary_10_1109_TIP_2023_3282074 |
| Cites_doi | 10.1109/CVPR.2005.177 10.1109/CVPR.2018.00172 10.1109/TPAMI.2012.88 10.1016/j.artint.2019.06.001 10.1109/CVPR.2011.5995365 10.1109/ICCV.2013.35 10.1109/ICCV.2017.626 10.1109/ICCV.2017.612 10.1016/j.ins.2017.09.047 10.1109/CVPR.2016.556 10.1109/TNNLS.2018.2843798 10.1016/j.neucom.2017.01.085 10.1109/TIP.2018.2848470 10.1109/34.868688 10.1109/TNNLS.2018.2827036 10.23919/EUSIPCO.2018.8553061 10.1109/TPAMI.2013.57 10.1007/978-3-642-12304-7_9 10.1109/ICDM.2001.989507 10.1109/ICIP.2014.7025576 10.1007/978-3-642-33786-4_26 10.1109/34.954598 10.1109/ICPR.2014.272 10.1109/TNNLS.2015.2472284 10.1109/34.927464 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2020.2978389 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 449 |
| ExternalDocumentID | 32217483 10_1109_TNNLS_2020_2978389 9047148 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871470; U1801262; U1864204; 61773316 funderid: 10.13039/501100001809 – fundername: Xi’an Postdoctoral Innovation Base Funding – fundername: China Postdoctoral Science Foundation grantid: 2018M643765; 2019T120960 funderid: 10.13039/501100002858 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-a7abf43605d0d4ba47499c67d8a016588d8fbd9ca3024423fc90e561bbfbae683 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641162100035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 05:49:01 EDT 2025 Sun Nov 09 07:57:24 EST 2025 Thu Jan 02 22:57:32 EST 2025 Tue Nov 18 22:43:53 EST 2025 Sat Nov 29 01:40:06 EST 2025 Wed Aug 27 06:01:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-a7abf43605d0d4ba47499c67d8a016588d8fbd9ca3024423fc90e561bbfbae683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2924-946X 0000-0001-9418-0863 0000-0003-4274-7332 0000-0002-7028-4956 |
| PMID | 32217483 |
| PQID | 2475960587 |
| PQPubID | 85436 |
| PageCount | 7 |
| ParticipantIDs | pubmed_primary_32217483 crossref_citationtrail_10_1109_TNNLS_2020_2978389 proquest_miscellaneous_2384210465 ieee_primary_9047148 proquest_journals_2475960587 crossref_primary_10_1109_TNNLS_2020_2978389 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Jan. 2021-1-00 2021-Jan 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 xiao (ref34) 2017 ref15 ref31 ref11 ref32 ref10 ref2 ref1 ref17 nene (ref28) 1996 ref19 ref18 yang (ref26) 2016 krizhevsky (ref30) 2009 ref24 ref23 ref25 ref21 peng (ref20) 0; 2016 peng (ref16) 2017 ji (ref22) 2017 ref27 ref29 ref8 ref7 ref9 peng (ref14) 2018 ref4 ref3 ref6 ref5 tian (ref33) 2014 |
| References_xml | – ident: ref32 doi: 10.1109/CVPR.2005.177 – ident: ref19 doi: 10.1109/CVPR.2018.00172 – ident: ref5 doi: 10.1109/TPAMI.2012.88 – ident: ref12 doi: 10.1016/j.artint.2019.06.001 – year: 2017 ident: ref34 article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms publication-title: ArXiv 1708 07747 – year: 2018 ident: ref14 article-title: K-meansNet: When k-means meets differentiable programming publication-title: arXiv 1808 07292 – year: 2009 ident: ref30 article-title: Learning multiple layers of features from tiny images – ident: ref8 doi: 10.1109/CVPR.2011.5995365 – ident: ref7 doi: 10.1109/ICCV.2013.35 – ident: ref17 doi: 10.1109/ICCV.2017.626 – ident: ref27 doi: 10.1109/ICCV.2017.612 – ident: ref21 doi: 10.1016/j.ins.2017.09.047 – ident: ref24 doi: 10.1109/CVPR.2016.556 – ident: ref25 doi: 10.1109/TNNLS.2018.2843798 – start-page: 2478 year: 2017 ident: ref16 article-title: Cascade subspace clustering publication-title: Proc AAAI – ident: ref9 doi: 10.1016/j.neucom.2017.01.085 – ident: ref15 doi: 10.1109/TIP.2018.2848470 – year: 2016 ident: ref26 article-title: Towards K-means-friendly spaces: Simultaneous deep learning and clustering publication-title: arXiv 1610 04794 – ident: ref1 doi: 10.1109/34.868688 – ident: ref13 doi: 10.1109/TNNLS.2018.2827036 – volume: 2016 start-page: 1925 year: 0 ident: ref20 article-title: Deep subspace clustering with sparsity prior publication-title: Proc 25th Int Joint Conf Artif Intell – start-page: 1293 year: 2014 ident: ref33 article-title: Learning deep representations for graph clustering publication-title: Proc 28th AAAI Conf Artif Intell – ident: ref18 doi: 10.23919/EUSIPCO.2018.8553061 – ident: ref6 doi: 10.1109/TPAMI.2013.57 – ident: ref31 doi: 10.1007/978-3-642-12304-7_9 – year: 1996 ident: ref28 article-title: Columbia object image library (coil-20) – ident: ref3 doi: 10.1109/ICDM.2001.989507 – ident: ref11 doi: 10.1109/ICIP.2014.7025576 – ident: ref4 doi: 10.1007/978-3-642-33786-4_26 – ident: ref2 doi: 10.1109/34.954598 – ident: ref23 doi: 10.1109/ICPR.2014.272 – ident: ref10 doi: 10.1109/TNNLS.2015.2472284 – start-page: 23 year: 2017 ident: ref22 article-title: Deep subspace clustering networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref29 doi: 10.1109/34.927464 |
| SSID | ssj0000605649 |
| Score | 2.5303376 |
| Snippet | The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 443 |
| SubjectTerms | Adaptive neighbors Adaptive systems autoencoder Clustering Clustering algorithms Clustering methods deep clustering Kernel Learning Learning systems Linearity Machine learning Neural networks parameter-free similarity Representations Sparse matrices structured graph Subspace methods |
| Title | Autoencoder Constrained Clustering With Adaptive Neighbors |
| URI | https://ieeexplore.ieee.org/document/9047148 https://www.ncbi.nlm.nih.gov/pubmed/32217483 https://www.proquest.com/docview/2475960587 https://www.proquest.com/docview/2384210465 |
| Volume | 32 |
| WOSCitedRecordID | wos000641162100035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLe2iQMXtjFghTEViRt0S5OsSbg9TZs4oAqJId6tyqeYNL037bX8_dh5baVJgMStatM2sp34Zzu2Ad4H6XlKKlS1j6yS2oXK2rqunHHOGea9jzY3m1Btq5dL83UHPs65MDHGfPgsntFljuWHtR_IVXZuGG6lUu_CrlLNNldr9qcwxOVNRru8bnjFhVpOOTLMnN-07ZdvaA1ydsbJ2aGpWijKMuJxLR6ppNxj5e9wM6ud6_3_m_ABPBvhZbnYysMh7MTVc9ifWjeU40o-gk-LoV9TDcuAd6lpZ24VEUN5eTdQ6QRUaOWP2_5nuQj2nnbEsiUfKgrM5gV8v766ufxcjW0UKi8u6r6yyrokBdInsCCdlQqtHN-ooC3lMmkddHLBeCtQXyO6St6wiLDKueRsbLR4CXur9SoeQxltlEk4pYRw0jFlksWN2zY6RUReMRRQT5Ts_FhjnOZ_12Vbg5kuM6IjRnQjIwr4ML9zv62w8c_RR0TmeeRI4QJOJoZ14yLcdJxqGVLYVxXwbn6My4diInYV1wOOEVpyinNfFPBqy-j525N8vP7zP9_AU04HXLI_5gT2-ochvoUn_ld_u3k4RRld6tMso78B8ofhiA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQGIvbDC2FTYoEm_QLU2yJuHtNDFt2lEhcWj3VuVTmzTdTbuWv58411ZCGki8VW3aRrYT_2zHNsBHxy0NQbiitJ4UXBpXaF2WhVHGGEWstV6nZhOiruV8rr5vwOcxF8Z7nw6f-WO8TLF8t7QduspOFIlbKZdP4Cl2zuqztUaPConIvEp4l5YVLSgT8yFLhqiTWV1Pf0R7kJJjiu4OifVCozRHRC7ZH0opdVn5O-BMiud8-_-mvAMveoCZT9YS8RI2_OIVbA_NG_J-Le_Cl0nXLrGKpYt3sW1nahbhXX5212HxhKjS8uvb9iafOH2Pe2Jeoxc1iszqNfw8_zo7uyj6RgqFZadlW2ihTeAs0scRx43mIto5thJOasxmktLJYJyymkWNHfFVsIr4CKyMCUb7SrI92FwsF_4Acq89D8wIwZjhhggVdNy6dSWDj9jLuwzKgZKN7auM4_zvmmRtENUkRjTIiKZnRAafxnfu1zU2_jl6F8k8juwpnMHhwLCmX4arhmI1Qwz8igw-jI_jAsKoiF74ZRfHMMkpRrpPM9hfM3r89iAfbx7_53t4fjH7Nm2ml_XVW9iieNwleWcOYbN96PwRPLO_2tvVw7skqb8BiyDj6Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder+Constrained+Clustering+With+Adaptive+Neighbors&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Xuelong&rft.au=Zhang%2C+Rui&rft.au=Wang%2C+Qi&rft.au=Zhang%2C+Hongyuan&rft.date=2021-01-01&rft.eissn=2162-2388&rft.volume=32&rft.issue=1&rft.spage=443&rft_id=info:doi/10.1109%2FTNNLS.2020.2978389&rft_id=info%3Apmid%2F32217483&rft.externalDocID=32217483 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |