Autoencoder Constrained Clustering With Adaptive Neighbors

The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 32; číslo 1; s. 443 - 449
Hlavní autoři: Li, Xuelong, Zhang, Rui, Wang, Qi, Zhang, Hongyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address this problem, in this brief, we embed the structured graph learning with adaptive neighbors into the deep autoencoder networks such that an adaptive deep clustering approach, namely, autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data via a parameter-free graph built upon deep features but also can iteratively strengthen the correlations among the deep representations in the learning process. In addition, the local structure of raw data is preserved by minimizing the reconstruction error. Compared to the state-of-the-art works, ACC_AN is the first deep clustering method embedded with the adaptive structured graph learning to update the latent representation of data and structured deep graph simultaneously.
AbstractList The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address this problem, in this brief, we embed the structured graph learning with adaptive neighbors into the deep autoencoder networks such that an adaptive deep clustering approach, namely, autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data via a parameter-free graph built upon deep features but also can iteratively strengthen the correlations among the deep representations in the learning process. In addition, the local structure of raw data is preserved by minimizing the reconstruction error. Compared to the state-of-the-art works, ACC_AN is the first deep clustering method embedded with the adaptive structured graph learning to update the latent representation of data and structured deep graph simultaneously.The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address this problem, in this brief, we embed the structured graph learning with adaptive neighbors into the deep autoencoder networks such that an adaptive deep clustering approach, namely, autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data via a parameter-free graph built upon deep features but also can iteratively strengthen the correlations among the deep representations in the learning process. In addition, the local structure of raw data is preserved by minimizing the reconstruction error. Compared to the state-of-the-art works, ACC_AN is the first deep clustering method embedded with the adaptive structured graph learning to update the latent representation of data and structured deep graph simultaneously.
The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address this problem, in this brief, we embed the structured graph learning with adaptive neighbors into the deep autoencoder networks such that an adaptive deep clustering approach, namely, autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data via a parameter-free graph built upon deep features but also can iteratively strengthen the correlations among the deep representations in the learning process. In addition, the local structure of raw data is preserved by minimizing the reconstruction error. Compared to the state-of-the-art works, ACC_AN is the first deep clustering method embedded with the adaptive structured graph learning to update the latent representation of data and structured deep graph simultaneously.
Author Wang, Qi
Li, Xuelong
Zhang, Hongyuan
Zhang, Rui
Author_xml – sequence: 1
  givenname: Xuelong
  orcidid: 0000-0003-2924-946X
  surname: Li
  fullname: Li, Xuelong
  email: xuelong_li@nwpu.edu.cn
  organization: School of Computer Science and the Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Rui
  orcidid: 0000-0001-9418-0863
  surname: Zhang
  fullname: Zhang, Rui
  email: ruizhang8633@gmail.com
  organization: School of Computer Science and the Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Qi
  orcidid: 0000-0002-7028-4956
  surname: Wang
  fullname: Wang, Qi
  email: crabwq@gmail.com
  organization: School of Computer Science and the Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Hongyuan
  orcidid: 0000-0003-4274-7332
  surname: Zhang
  fullname: Zhang, Hongyuan
  email: hyzhang98@gmail.com
  organization: School of Computer Science and the Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32217483$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PGzEQhq0KVCjlDxQJrcSllwR_7druLYrohxSFQ4PozfKuZ8FoY6e2F4l_X4eEHDjUl_HheWfemfcTOvLBA0JfCJ4SgtX1arlc_J5STPGUKiGZVB_QKSUNnVAm5dHhL_6coPOUnnB5Da4brj6iE0YpEVyyU_RtNuYAvgsWYjUPPuVonAdbzYcxZYjOP1T3Lj9WM2s22T1DtQT38NiGmD6j494MCc739Qzdfb9ZzX9OFrc_fs1ni0nHapInRpi256zMttjy1nDBleoaYaXBpKmltLJvreoMw5RzyvpOYagb0rZ9a6CR7Ax93fXdxPB3hJT12qUOhsF4CGPSZV9OCeZNXdCrd-hTGKMv7jTlolbFhBSFutxTY7sGqzfRrU180W9XKYDcAV0MKUXodeeyyS747XUGTbDeZqBfM9DbDPQ-gyKl76Rv3f8rutiJHAAcBApzQYqdf3m-kKY
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_ins_2023_119643
crossref_primary_10_1109_TAI_2021_3139573
crossref_primary_10_1016_j_asoc_2024_112256
crossref_primary_10_1016_j_neunet_2025_107504
crossref_primary_10_3390_math12101526
crossref_primary_10_3390_app15116177
crossref_primary_10_1109_TNNLS_2023_3281570
crossref_primary_10_1007_s10462_025_11349_w
crossref_primary_10_1016_j_knosys_2024_112601
crossref_primary_10_1109_TCYB_2021_3065070
crossref_primary_10_3390_electronics12112489
crossref_primary_10_1109_TNNLS_2021_3056420
crossref_primary_10_1109_TNNLS_2024_3353217
crossref_primary_10_1109_ACCESS_2025_3568798
crossref_primary_10_1109_TNNLS_2021_3132918
crossref_primary_10_1016_j_engappai_2024_108612
crossref_primary_10_1109_TKDE_2023_3327043
crossref_primary_10_1016_j_ins_2022_07_177
crossref_primary_10_1109_TFUZZ_2024_3462545
crossref_primary_10_1007_s11263_022_01639_z
crossref_primary_10_1016_j_neucom_2021_12_050
crossref_primary_10_1007_s10489_021_02558_1
crossref_primary_10_1016_j_knosys_2023_111100
crossref_primary_10_1016_j_neucom_2022_04_007
crossref_primary_10_1109_TNNLS_2024_3355928
crossref_primary_10_3390_su16219244
crossref_primary_10_1016_j_neucom_2021_06_011
crossref_primary_10_1109_TNNLS_2022_3190836
crossref_primary_10_1007_s00138_021_01223_4
crossref_primary_10_1007_s42979_021_00762_x
crossref_primary_10_1109_TNNLS_2022_3224577
crossref_primary_10_1109_TNNLS_2021_3109953
crossref_primary_10_1109_TKDE_2022_3167996
crossref_primary_10_1007_s42979_021_00806_2
crossref_primary_10_1109_TKDE_2024_3437364
crossref_primary_10_1109_TKDE_2021_3076521
crossref_primary_10_1007_s10489_022_03551_y
crossref_primary_10_1109_TNNLS_2023_3263195
crossref_primary_10_1155_2021_4935108
crossref_primary_10_1109_LSP_2022_3217441
crossref_primary_10_1109_LSP_2021_3116521
crossref_primary_10_1109_TGRS_2023_3267070
crossref_primary_10_1016_j_knosys_2022_108741
crossref_primary_10_1109_LSP_2022_3193631
crossref_primary_10_1016_j_patcog_2022_108768
crossref_primary_10_1109_TNNLS_2022_3158654
crossref_primary_10_1109_TCYB_2021_3125956
crossref_primary_10_1016_j_neucom_2022_09_087
crossref_primary_10_1109_TIP_2023_3282074
Cites_doi 10.1109/CVPR.2005.177
10.1109/CVPR.2018.00172
10.1109/TPAMI.2012.88
10.1016/j.artint.2019.06.001
10.1109/CVPR.2011.5995365
10.1109/ICCV.2013.35
10.1109/ICCV.2017.626
10.1109/ICCV.2017.612
10.1016/j.ins.2017.09.047
10.1109/CVPR.2016.556
10.1109/TNNLS.2018.2843798
10.1016/j.neucom.2017.01.085
10.1109/TIP.2018.2848470
10.1109/34.868688
10.1109/TNNLS.2018.2827036
10.23919/EUSIPCO.2018.8553061
10.1109/TPAMI.2013.57
10.1007/978-3-642-12304-7_9
10.1109/ICDM.2001.989507
10.1109/ICIP.2014.7025576
10.1007/978-3-642-33786-4_26
10.1109/34.954598
10.1109/ICPR.2014.272
10.1109/TNNLS.2015.2472284
10.1109/34.927464
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.2978389
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 449
ExternalDocumentID 32217483
10_1109_TNNLS_2020_2978389
9047148
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871470; U1801262; U1864204; 61773316
  funderid: 10.13039/501100001809
– fundername: Xi’an Postdoctoral Innovation Base Funding
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M643765; 2019T120960
  funderid: 10.13039/501100002858
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-a7abf43605d0d4ba47499c67d8a016588d8fbd9ca3024423fc90e561bbfbae683
IEDL.DBID RIE
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641162100035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 05:49:01 EDT 2025
Sun Nov 09 07:57:24 EST 2025
Thu Jan 02 22:57:32 EST 2025
Tue Nov 18 22:43:53 EST 2025
Sat Nov 29 01:40:06 EST 2025
Wed Aug 27 06:01:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-a7abf43605d0d4ba47499c67d8a016588d8fbd9ca3024423fc90e561bbfbae683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2924-946X
0000-0001-9418-0863
0000-0003-4274-7332
0000-0002-7028-4956
PMID 32217483
PQID 2475960587
PQPubID 85436
PageCount 7
ParticipantIDs pubmed_primary_32217483
crossref_citationtrail_10_1109_TNNLS_2020_2978389
proquest_miscellaneous_2384210465
ieee_primary_9047148
proquest_journals_2475960587
crossref_primary_10_1109_TNNLS_2020_2978389
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
xiao (ref34) 2017
ref15
ref31
ref11
ref32
ref10
ref2
ref1
ref17
nene (ref28) 1996
ref19
ref18
yang (ref26) 2016
krizhevsky (ref30) 2009
ref24
ref23
ref25
ref21
peng (ref20) 0; 2016
peng (ref16) 2017
ji (ref22) 2017
ref27
ref29
ref8
ref7
ref9
peng (ref14) 2018
ref4
ref3
ref6
ref5
tian (ref33) 2014
References_xml – ident: ref32
  doi: 10.1109/CVPR.2005.177
– ident: ref19
  doi: 10.1109/CVPR.2018.00172
– ident: ref5
  doi: 10.1109/TPAMI.2012.88
– ident: ref12
  doi: 10.1016/j.artint.2019.06.001
– year: 2017
  ident: ref34
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
  publication-title: ArXiv 1708 07747
– year: 2018
  ident: ref14
  article-title: K-meansNet: When k-means meets differentiable programming
  publication-title: arXiv 1808 07292
– year: 2009
  ident: ref30
  article-title: Learning multiple layers of features from tiny images
– ident: ref8
  doi: 10.1109/CVPR.2011.5995365
– ident: ref7
  doi: 10.1109/ICCV.2013.35
– ident: ref17
  doi: 10.1109/ICCV.2017.626
– ident: ref27
  doi: 10.1109/ICCV.2017.612
– ident: ref21
  doi: 10.1016/j.ins.2017.09.047
– ident: ref24
  doi: 10.1109/CVPR.2016.556
– ident: ref25
  doi: 10.1109/TNNLS.2018.2843798
– start-page: 2478
  year: 2017
  ident: ref16
  article-title: Cascade subspace clustering
  publication-title: Proc AAAI
– ident: ref9
  doi: 10.1016/j.neucom.2017.01.085
– ident: ref15
  doi: 10.1109/TIP.2018.2848470
– year: 2016
  ident: ref26
  article-title: Towards K-means-friendly spaces: Simultaneous deep learning and clustering
  publication-title: arXiv 1610 04794
– ident: ref1
  doi: 10.1109/34.868688
– ident: ref13
  doi: 10.1109/TNNLS.2018.2827036
– volume: 2016
  start-page: 1925
  year: 0
  ident: ref20
  article-title: Deep subspace clustering with sparsity prior
  publication-title: Proc 25th Int Joint Conf Artif Intell
– start-page: 1293
  year: 2014
  ident: ref33
  article-title: Learning deep representations for graph clustering
  publication-title: Proc 28th AAAI Conf Artif Intell
– ident: ref18
  doi: 10.23919/EUSIPCO.2018.8553061
– ident: ref6
  doi: 10.1109/TPAMI.2013.57
– ident: ref31
  doi: 10.1007/978-3-642-12304-7_9
– year: 1996
  ident: ref28
  article-title: Columbia object image library (coil-20)
– ident: ref3
  doi: 10.1109/ICDM.2001.989507
– ident: ref11
  doi: 10.1109/ICIP.2014.7025576
– ident: ref4
  doi: 10.1007/978-3-642-33786-4_26
– ident: ref2
  doi: 10.1109/34.954598
– ident: ref23
  doi: 10.1109/ICPR.2014.272
– ident: ref10
  doi: 10.1109/TNNLS.2015.2472284
– start-page: 23
  year: 2017
  ident: ref22
  article-title: Deep subspace clustering networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref29
  doi: 10.1109/34.927464
SSID ssj0000605649
Score 2.5303376
Snippet The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 443
SubjectTerms Adaptive neighbors
Adaptive systems
autoencoder
Clustering
Clustering algorithms
Clustering methods
deep clustering
Kernel
Learning
Learning systems
Linearity
Machine learning
Neural networks
parameter-free similarity
Representations
Sparse matrices
structured graph
Subspace methods
Title Autoencoder Constrained Clustering With Adaptive Neighbors
URI https://ieeexplore.ieee.org/document/9047148
https://www.ncbi.nlm.nih.gov/pubmed/32217483
https://www.proquest.com/docview/2475960587
https://www.proquest.com/docview/2384210465
Volume 32
WOSCitedRecordID wos000641162100035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLe2iQMXtjFghTEViRt0S5OsSbg9TZs4oAqJId6tyqeYNL037bX8_dh5baVJgMStatM2sp34Zzu2Ad4H6XlKKlS1j6yS2oXK2rqunHHOGea9jzY3m1Btq5dL83UHPs65MDHGfPgsntFljuWHtR_IVXZuGG6lUu_CrlLNNldr9qcwxOVNRru8bnjFhVpOOTLMnN-07ZdvaA1ydsbJ2aGpWijKMuJxLR6ppNxj5e9wM6ud6_3_m_ABPBvhZbnYysMh7MTVc9ifWjeU40o-gk-LoV9TDcuAd6lpZ24VEUN5eTdQ6QRUaOWP2_5nuQj2nnbEsiUfKgrM5gV8v766ufxcjW0UKi8u6r6yyrokBdInsCCdlQqtHN-ooC3lMmkddHLBeCtQXyO6St6wiLDKueRsbLR4CXur9SoeQxltlEk4pYRw0jFlksWN2zY6RUReMRRQT5Ts_FhjnOZ_12Vbg5kuM6IjRnQjIwr4ML9zv62w8c_RR0TmeeRI4QJOJoZ14yLcdJxqGVLYVxXwbn6My4diInYV1wOOEVpyinNfFPBqy-j525N8vP7zP9_AU04HXLI_5gT2-ochvoUn_ld_u3k4RRld6tMso78B8ofhiA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQGIvbDC2FTYoEm_QLU2yJuHtNDFt2lEhcWj3VuVTmzTdTbuWv58411ZCGki8VW3aRrYT_2zHNsBHxy0NQbiitJ4UXBpXaF2WhVHGGEWstV6nZhOiruV8rr5vwOcxF8Z7nw6f-WO8TLF8t7QduspOFIlbKZdP4Cl2zuqztUaPConIvEp4l5YVLSgT8yFLhqiTWV1Pf0R7kJJjiu4OifVCozRHRC7ZH0opdVn5O-BMiud8-_-mvAMveoCZT9YS8RI2_OIVbA_NG_J-Le_Cl0nXLrGKpYt3sW1nahbhXX5212HxhKjS8uvb9iafOH2Pe2Jeoxc1iszqNfw8_zo7uyj6RgqFZadlW2ihTeAs0scRx43mIto5thJOasxmktLJYJyymkWNHfFVsIr4CKyMCUb7SrI92FwsF_4Acq89D8wIwZjhhggVdNy6dSWDj9jLuwzKgZKN7auM4_zvmmRtENUkRjTIiKZnRAafxnfu1zU2_jl6F8k8juwpnMHhwLCmX4arhmI1Qwz8igw-jI_jAsKoiF74ZRfHMMkpRrpPM9hfM3r89iAfbx7_53t4fjH7Nm2ml_XVW9iieNwleWcOYbN96PwRPLO_2tvVw7skqb8BiyDj6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder+Constrained+Clustering+With+Adaptive+Neighbors&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Xuelong&rft.au=Zhang%2C+Rui&rft.au=Wang%2C+Qi&rft.au=Zhang%2C+Hongyuan&rft.date=2021-01-01&rft.eissn=2162-2388&rft.volume=32&rft.issue=1&rft.spage=443&rft_id=info:doi/10.1109%2FTNNLS.2020.2978389&rft_id=info%3Apmid%2F32217483&rft.externalDocID=32217483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon