Autoencoder Constrained Clustering With Adaptive Neighbors
The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address t...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 32; číslo 1; s. 443 - 449 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The conventional subspace clustering method obtains explicit data representation that captures the global structure of data and clusters via the associated subspace. However, due to the limitation of intrinsic linearity and fixed structure, the advantages of prior structure are limited. To address this problem, in this brief, we embed the structured graph learning with adaptive neighbors into the deep autoencoder networks such that an adaptive deep clustering approach, namely, autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data via a parameter-free graph built upon deep features but also can iteratively strengthen the correlations among the deep representations in the learning process. In addition, the local structure of raw data is preserved by minimizing the reconstruction error. Compared to the state-of-the-art works, ACC_AN is the first deep clustering method embedded with the adaptive structured graph learning to update the latent representation of data and structured deep graph simultaneously. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2020.2978389 |