A New Neural Dynamic Classification Algorithm

The keys for the development of an effective classification algorithm are: 1) discovering feature spaces with large margins between clusters and close proximity of the classmates and 2) discovering the smallest number of the features to perform accurate classification. In this paper, a new supervise...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 28; no. 12; pp. 3074 - 3083
Main Authors: Rafiei, Mohammad Hossein, Adeli, Hojjat
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The keys for the development of an effective classification algorithm are: 1) discovering feature spaces with large margins between clusters and close proximity of the classmates and 2) discovering the smallest number of the features to perform accurate classification. In this paper, a new supervised classification algorithm, called neural dynamic classification (NDC), is presented with the goal of: 1) discovering the most effective feature spaces and 2) finding the optimum number of features required for accurate classification using the patented robust neural dynamic optimization model of Adeli and Park. The new classification algorithm is compared with the probabilistic neural network (PNN), enhanced PNN (EPNN), and support vector machine using two sets of classification problems. The first set consists of five standard benchmark problems. The second set is a large benchmark problem called Mixed National Institute of Standards and Technology database of handwritten digits. In general, NDC yields the most accurate classification results followed by EPNN. A beauty of the new algorithm is the smoothness of convergence curves which is an indication of robustness and good performance of the algorithm. The main aim is to maximize the prediction accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2017.2682102