Transfer Learning Algorithm With Knowledge Division Level
One of the major challenges of transfer learning algorithms is the domain drifting problem where the knowledge of source scene is inappropriate for the task of target scene. To solve this problem, a transfer learning algorithm with knowledge division level (KDTL) is proposed to subdivide knowledge o...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 34; číslo 11; s. 8602 - 8616 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | One of the major challenges of transfer learning algorithms is the domain drifting problem where the knowledge of source scene is inappropriate for the task of target scene. To solve this problem, a transfer learning algorithm with knowledge division level (KDTL) is proposed to subdivide knowledge of source scene and leverage them with different drifting degrees. The main properties of KDTL are three folds. First, a comparative evaluation mechanism is developed to detect and subdivide the knowledge into three kinds-the ineffective knowledge, the usable knowledge, and the efficient knowledge. Then, the ineffective and usable knowledge can be found to avoid the negative transfer problem. Second, an integrated framework is designed to prune the ineffective knowledge in the elastic layer, reconstruct the usable knowledge in the refined layer, and learn the efficient knowledge in the leveraged layer. Then, the efficient knowledge can be acquired to improve the learning performance. Third, the theoretical analysis of the proposed KDTL is analyzed in different phases. Then, the convergence property, error bound, and computational complexity of KDTL are provided for the successful applications. Finally, the proposed KDTL is tested by several benchmark problems and some real problems. The experimental results demonstrate that this proposed KDTL can achieve significant improvement over some state-of-the-art algorithms. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2022.3151646 |