Reinforcement Learning-Based Optimal Stabilization for Unknown Nonlinear Systems Subject to Inputs With Uncertain Constraints
This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforwa...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 31; číslo 10; s. 4330 - 4340 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!