Estimation of the support of a discrete distribution

Let Y be a positive integer-valued random variable with the probability mass function P θ(Y=y)=f(y;r)/a(θ), y=r,r+1,…,θ , where r is a known positive integer, and θ∈Θ={r,r+1,…} is an unknown parameter. We show that, for estimating θ, cY is inadmissible under both 0–1 and a general loss whenever 0<...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics & probability letters Ročník 48; číslo 3; s. 287 - 292
Hlavní autori: Pal, Nabendu, Shen, Wei-Hsiung, Sinha, Bimal K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.07.2000
Elsevier
Edícia:Statistics & Probability Letters
Predmet:
ISSN:0167-7152, 1879-2103
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let Y be a positive integer-valued random variable with the probability mass function P θ(Y=y)=f(y;r)/a(θ), y=r,r+1,…,θ , where r is a known positive integer, and θ∈Θ={r,r+1,…} is an unknown parameter. We show that, for estimating θ, cY is inadmissible under both 0–1 and a general loss whenever 0<c<1. Under some mild conditions on f(y;r), we prove that Y is admissible and minimax under both 0–1 and squared error loss. As an application, we consider the problem of estimating the size θ of a finite population whose elements are labeled from 1 to θ, based on a simple random sample of size n under both with and without replacement. Admissibility and minimaxity of Y, the largest number observed in the sample, under 0–1 and squared error loss hold under both sampling situations. We propose two integer-valued estimators of θ of the form [cY] for c>1 in the case of sampling with replacement and discuss their bias and mean-squared error ( [cY] denotes the integer nearest to cY).
ISSN:0167-7152
1879-2103
DOI:10.1016/S0167-7152(00)00009-2