Estimation of the support of a discrete distribution

Let Y be a positive integer-valued random variable with the probability mass function P θ(Y=y)=f(y;r)/a(θ), y=r,r+1,…,θ , where r is a known positive integer, and θ∈Θ={r,r+1,…} is an unknown parameter. We show that, for estimating θ, cY is inadmissible under both 0–1 and a general loss whenever 0<...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics & probability letters Jg. 48; H. 3; S. 287 - 292
Hauptverfasser: Pal, Nabendu, Shen, Wei-Hsiung, Sinha, Bimal K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.07.2000
Elsevier
Schriftenreihe:Statistics & Probability Letters
Schlagworte:
ISSN:0167-7152, 1879-2103
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Y be a positive integer-valued random variable with the probability mass function P θ(Y=y)=f(y;r)/a(θ), y=r,r+1,…,θ , where r is a known positive integer, and θ∈Θ={r,r+1,…} is an unknown parameter. We show that, for estimating θ, cY is inadmissible under both 0–1 and a general loss whenever 0<c<1. Under some mild conditions on f(y;r), we prove that Y is admissible and minimax under both 0–1 and squared error loss. As an application, we consider the problem of estimating the size θ of a finite population whose elements are labeled from 1 to θ, based on a simple random sample of size n under both with and without replacement. Admissibility and minimaxity of Y, the largest number observed in the sample, under 0–1 and squared error loss hold under both sampling situations. We propose two integer-valued estimators of θ of the form [cY] for c>1 in the case of sampling with replacement and discuss their bias and mean-squared error ( [cY] denotes the integer nearest to cY).
ISSN:0167-7152
1879-2103
DOI:10.1016/S0167-7152(00)00009-2