Estimation of the support of a discrete distribution

Let Y be a positive integer-valued random variable with the probability mass function P θ(Y=y)=f(y;r)/a(θ), y=r,r+1,…,θ , where r is a known positive integer, and θ∈Θ={r,r+1,…} is an unknown parameter. We show that, for estimating θ, cY is inadmissible under both 0–1 and a general loss whenever 0<...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics & probability letters Jg. 48; H. 3; S. 287 - 292
Hauptverfasser: Pal, Nabendu, Shen, Wei-Hsiung, Sinha, Bimal K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.07.2000
Elsevier
Schriftenreihe:Statistics & Probability Letters
Schlagworte:
ISSN:0167-7152, 1879-2103
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Let Y be a positive integer-valued random variable with the probability mass function P θ(Y=y)=f(y;r)/a(θ), y=r,r+1,…,θ , where r is a known positive integer, and θ∈Θ={r,r+1,…} is an unknown parameter. We show that, for estimating θ, cY is inadmissible under both 0–1 and a general loss whenever 0<c<1. Under some mild conditions on f(y;r), we prove that Y is admissible and minimax under both 0–1 and squared error loss. As an application, we consider the problem of estimating the size θ of a finite population whose elements are labeled from 1 to θ, based on a simple random sample of size n under both with and without replacement. Admissibility and minimaxity of Y, the largest number observed in the sample, under 0–1 and squared error loss hold under both sampling situations. We propose two integer-valued estimators of θ of the form [cY] for c>1 in the case of sampling with replacement and discuss their bias and mean-squared error ( [cY] denotes the integer nearest to cY).
AbstractList Let Y be a positive integer-valued random variable with the probability mass function P[theta](Y=y)=f(y;r)/a([theta]), y=r,r+1,...,[theta], where r is a known positive integer, and [theta][set membership, variant][Theta]={r,r+1,...} is an unknown parameter. We show that, for estimating [theta], cY is inadmissible under both 0-1 and a general loss whenever 01 in the case of sampling with replacement and discuss their bias and mean-squared error ([cY] denotes the integer nearest to cY).
Let Y be a positive integer-valued random variable with the probability mass function P θ(Y=y)=f(y;r)/a(θ), y=r,r+1,…,θ , where r is a known positive integer, and θ∈Θ={r,r+1,…} is an unknown parameter. We show that, for estimating θ, cY is inadmissible under both 0–1 and a general loss whenever 0<c<1. Under some mild conditions on f(y;r), we prove that Y is admissible and minimax under both 0–1 and squared error loss. As an application, we consider the problem of estimating the size θ of a finite population whose elements are labeled from 1 to θ, based on a simple random sample of size n under both with and without replacement. Admissibility and minimaxity of Y, the largest number observed in the sample, under 0–1 and squared error loss hold under both sampling situations. We propose two integer-valued estimators of θ of the form [cY] for c>1 in the case of sampling with replacement and discuss their bias and mean-squared error ( [cY] denotes the integer nearest to cY).
Author Shen, Wei-Hsiung
Pal, Nabendu
Sinha, Bimal K.
Author_xml – sequence: 1
  givenname: Nabendu
  surname: Pal
  fullname: Pal, Nabendu
  organization: Department of Mathematics, University of Southwestern Louisiana, Lafayette, LA 70504, USA
– sequence: 2
  givenname: Wei-Hsiung
  surname: Shen
  fullname: Shen, Wei-Hsiung
  organization: Department of Statistics, Tunghai University, Taichung, Taiwan
– sequence: 3
  givenname: Bimal K.
  surname: Sinha
  fullname: Sinha, Bimal K.
  email: sinha@math.umbc.edu
  organization: Department of Mathematics and Statistics, University of Maryland, Baltimore County Campus, Baltimore, MD 21228, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1403996$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeestapro/v_3a48_3ay_3a2000_3ai_3a3_3ap_3a287-292.htm$$DView record in RePEc
BookMark eNqFkMtKAzEUhoNUsFYfQejChS5Gc5lMZlYipd4ouLD7kDk9oZF2ZkjSQt_eTEfq0sC5JHznT_JfklHTNkjIDaMPjLLi8SsllSkm-R2l9zStKuNnZMxKlRpGxYiMT8gFuQzhOzFcSjYm-TxEtzXRtc20tdO4xmnYdV3rY78105UL4DFi30Tv6l1PXpFzazYBr3_rhCxf5svZW7b4fH2fPS8yEJLFrKpLVVgphYVKUW64srTMa5pblituDRjOpFJQc2OgUKbIy5oxBgwsFFaICfkYZD12CLrz6aH-oBExRNP5Vu-1MHmZ0iEFT39KxaUQKbr-qFSaV1yv4zaJ3Q5inQlgNtabBlw4ibKciqoqEiYHDHwbgkf7R1Ddu62PbuveSp0uPLqteZp7GuYw-bF36HUAhw3gynmEqFet-0fhB-uDhzY
CODEN SPLTDC
Cites_doi 10.1016/S0169-7161(88)06021-3
ContentType Journal Article
Copyright 2000 Elsevier Science B.V.
2000 INIST-CNRS
Copyright_xml – notice: 2000 Elsevier Science B.V.
– notice: 2000 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/S0167-7152(00)00009-2
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1879-2103
EndPage 292
ExternalDocumentID eeestapro_v_3a48_3ay_3a2000_3ai_3a3_3ap_3a287_292_htm
1403996
10_1016_S0167_7152_00_00009_2
S0167715200000092
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEHJ
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
G-
HX
HZ
IPNFZ
K
M
STF
X
X2L
ID FETCH-LOGICAL-c351t-9b876f553fc9702a27f084b04f1472faca21577cb2aac67a648b111c1cfc6f33
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000087539500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7152
IngestDate Wed Aug 18 03:10:15 EDT 2021
Mon Jul 21 09:15:20 EDT 2025
Sat Nov 29 03:46:03 EST 2025
Fri Feb 23 02:29:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 62G05
Minimax
Admissible
Hammersley–Chapman–Robbins inequality
Squared error loss
Population size
Mean-squared error
0–1 loss
Bayes estimation
Admissibility
Sample size
Hammersley Chapman Robins inequality
Discrete distribution
Minimaxity
Minimax method
Sampling without replacement
Support estimation
Mean square error
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-9b876f553fc9702a27f084b04f1472faca21577cb2aac67a648b111c1cfc6f33
PageCount 6
ParticipantIDs repec_primary_eeestapro_v_3a48_3ay_3a2000_3ai_3a3_3ap_3a287_292_htm
pascalfrancis_primary_1403996
crossref_primary_10_1016_S0167_7152_00_00009_2
elsevier_sciencedirect_doi_10_1016_S0167_7152_00_00009_2
PublicationCentury 2000
PublicationDate 2000-07-01
PublicationDateYYYYMMDD 2000-07-01
PublicationDate_xml – month: 07
  year: 2000
  text: 2000-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Statistics & Probability Letters
PublicationTitle Statistics & probability letters
PublicationYear 2000
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Seber (BIB6) 1982
Feller (BIB2) 1968
Hossain (BIB3) 1995; 15
Lehmann (BIB4) 1983
Rohatgi (BIB5) 1976
Boswell, Burnham, Patil (BIB1) 1988
Sengupta, De (BIB7) 1997; 59
Hossain (10.1016/S0167-7152(00)00009-2_BIB3) 1995; 15
Feller (10.1016/S0167-7152(00)00009-2_BIB2) 1968
Rohatgi (10.1016/S0167-7152(00)00009-2_BIB5) 1976
Seber (10.1016/S0167-7152(00)00009-2_BIB6) 1982
Sengupta (10.1016/S0167-7152(00)00009-2_BIB7) 1997; 59
Boswell (10.1016/S0167-7152(00)00009-2_BIB1) 1988
Lehmann (10.1016/S0167-7152(00)00009-2_BIB4) 1983
References_xml – volume: 59
  start-page: 66
  year: 1997
  end-page: 75
  ident: BIB7
  article-title: On the estimation of a finite population.
  publication-title: Sankhyā B
– year: 1968
  ident: BIB2
  publication-title: An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd Edition.
– year: 1983
  ident: BIB4
  publication-title: Theory of Point Estimation.
– volume: 15
  start-page: 89
  year: 1995
  end-page: 94
  ident: BIB3
  article-title: Unknown population size estimation: an urn model approach
  publication-title: J. Statist. Studies
– start-page: 469
  year: 1988
  end-page: 488
  ident: BIB1
  article-title: Role and use of composite sampling and capture–recapture sampling in ecological studies.
  publication-title: Handbook of Statistics, Vol. 6
– year: 1982
  ident: BIB6
  publication-title: The Estimation of Animal Abundance and Related Parameters, 2nd Edition.
– year: 1976
  ident: BIB5
  publication-title: An Introduction to Probability Theory and Mathematical Statistics.
– year: 1968
  ident: 10.1016/S0167-7152(00)00009-2_BIB2
– start-page: 469
  year: 1988
  ident: 10.1016/S0167-7152(00)00009-2_BIB1
  article-title: Role and use of composite sampling and capture–recapture sampling in ecological studies.
  doi: 10.1016/S0169-7161(88)06021-3
– year: 1983
  ident: 10.1016/S0167-7152(00)00009-2_BIB4
– volume: 59
  start-page: 66
  year: 1997
  ident: 10.1016/S0167-7152(00)00009-2_BIB7
  article-title: On the estimation of a finite population.
  publication-title: Sankhyā B
– volume: 15
  start-page: 89
  year: 1995
  ident: 10.1016/S0167-7152(00)00009-2_BIB3
  article-title: Unknown population size estimation: an urn model approach
  publication-title: J. Statist. Studies
– year: 1976
  ident: 10.1016/S0167-7152(00)00009-2_BIB5
– year: 1982
  ident: 10.1016/S0167-7152(00)00009-2_BIB6
SSID ssj0002551
Score 1.5310631
Snippet Let Y be a positive integer-valued random variable with the probability mass function P θ(Y=y)=f(y;r)/a(θ), y=r,r+1,…,θ , where r is a known positive integer,...
Let Y be a positive integer-valued random variable with the probability mass function P[theta](Y=y)=f(y;r)/a([theta]), y=r,r+1,...,[theta], where r is a known...
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Publisher
StartPage 287
SubjectTerms 0–1 loss
Admissible
Admissible Hammersley-Chapman-Robbins inequality Mean-squared error Minimax Population size Squared error loss 0-1 loss
Exact sciences and technology
Hammersley–Chapman–Robbins inequality
Mathematics
Mean-squared error
Minimax
Nonparametric inference
Population size
Probability and statistics
Sciences and techniques of general use
Squared error loss
Statistics
Title Estimation of the support of a discrete distribution
URI https://dx.doi.org/10.1016/S0167-7152(00)00009-2
http://econpapers.repec.org/article/eeestapro/v_3a48_3ay_3a2000_3ai_3a3_3ap_3a287-292.htm
Volume 48
WOSCitedRecordID wos000087539500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2103
  dateEnd: 20180430
  omitProxy: false
  ssIdentifier: ssj0002551
  issn: 0167-7152
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfQxsMQQjBAFBjKAw8glJE4Tpw8TlPR-JqQqKBvluPZWiWWRf2Ytv9-P8euk4L42AMPdlM3cV3f-e7nq--OkJdFzaHXaB0D_bKYSV3GsktaR5lmBhDjpEvJ8u0TPz4up9PqizdlL7p0ArxpysvLqv2vpEYbiG1dZ29A7tApGnANoqMG2VH_E-HHWLRnAQhaXLlYtRZlO1dI64Y7B1K2FyHb1RCiWvjpozdbtrAZZ1wsb5tiogvG2f_t5M5Ty1o3J6tgq_H-Ht_1LD5azFZeNdpPZo3P9IwB_njzcX_D5JCE46nBCgnpytN8Q4yycsAu2VAmeo3q1Ct1qe9-kdzOiPA1dA18bdNUVx2I9R6SG9Gyf9Ji4Wzh4NhawYXtSiQ2BCq6EdDV25TnFST49sH78fRDUNrYWaXrMPD2md7Z620_pldJ8tqP53cw5m4rF1hcxmVFwY5nrlutBpBlcp_c83uN6MDxyANySze75M7nEKh3sUt2emo_JKxnnejcRLgt8qxj38pozTrRkHUekcm78eTwKPZZNWKV5ekyrmooQJPnmVEVT6ik3CQlqxOsTMapkUoCBXKuaiqlKrgsWFlDIapUGVWYLHtMtprzRj8hEVUqNRpiW_OMsTypge2xwaAyt-bEohqR_fUcidbFThF_pM6IlOuZFB4AOmAnwCV_e3RvY-b7L2QJMHgxIocdJUK71kBdEmtIXIhMshLVFYpld7zMUDKU1jaVXIBrxeny7OlNf9EzstMvoOdkazlf6T1yW12AtPMXngmvAZo6lJQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+support+of+a+discrete+distribution&rft.jtitle=Statistics+%26+probability+letters&rft.au=Pal%2C+Nabendu&rft.au=Shen%2C+Wei-Hsiung&rft.au=Sinha%2C+Bimal+K.&rft.date=2000-07-01&rft.issn=0167-7152&rft.volume=48&rft.issue=3&rft.spage=287&rft.epage=292&rft_id=info:doi/10.1016%2FS0167-7152%2800%2900009-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0167_7152_00_00009_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon