A Dynamic Event-Triggered Approach to Recursive Filtering for Complex Networks With Switching Topologies Subject to Random Sensor Failures

This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 31; H. 10; S. 4381 - 4388
Hauptverfasser: Li, Qi, Wang, Zidong, Li, Nan, Sheng, Weiguo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions. In order to save communication cost, a dynamic event-triggered transmission protocol is introduced into the transmission channel from the sensors to the recursive filters. The objective of the addressed problem is to design a set of dynamic event-triggered filters for the underlying CN with a certain guaranteed upper bound (on the filtering error covariance) that is then locally minimized. By employing the induction method, an upper bound is first obtained on the filtering error covariance and subsequently minimized by properly designing the filter parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2951948