Hierarchical Deep Reinforcement Learning-Based Propofol Infusion Assistant Framework in Anesthesia

This article aims to provide a hierarchical reinforcement learning (RL)-based solution to the automated drug infusion field. The learning policy is divided into the tasks of: 1) learning trajectory generative model and 2) planning policy model. The proposed deep infusion assistant policy gradient (D...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 35; no. 2; pp. 2510 - 2521
Main Authors: Yun, Won Joon, Shin, Myungjae, Mohaisen, David, Lee, Kangwook, Kim, Joongheon
Format: Journal Article
Language:English
Published: United States IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article aims to provide a hierarchical reinforcement learning (RL)-based solution to the automated drug infusion field. The learning policy is divided into the tasks of: 1) learning trajectory generative model and 2) planning policy model. The proposed deep infusion assistant policy gradient (DIAPG) model draws inspiration from adversarial autoencoders (AAEs) and learns latent representations of hypnotic depth trajectories. Given the trajectories drawn from the generative model, the planning policy infers a dose of propofol for stable sedation of a patient under total intravenous anesthesia (TIVA) using propofol and remifentanil. Through extensive evaluation, the DIAPG model can effectively stabilize bispectral index (BIS) and effect site concentration given a potentially time-varying target sequence. The proposed DIAPG shows an increased performance of 530% and 15% when a human expert and a standard reinforcement algorithm are used to infuse drugs, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3190379