Asynchronous State Estimation for Discrete-Time Switched Complex Networks With Communication Constraints

This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-ba...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 29; číslo 5; s. 1732 - 1746
Hlavní autoři: Zhang, Dan, Wang, Qing-Guo, Srinivasan, Dipti, Li, Hongyi, Yu, Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.
AbstractList This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.
This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.
This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed H∞ performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.
This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.
Author Srinivasan, Dipti
Yu, Li
Wang, Qing-Guo
Zhang, Dan
Li, Hongyi
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0001-5140-3588
  surname: Zhang
  fullname: Zhang, Dan
  email: danzhang@zjut.edu.cn
  organization: Department of Automation, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Qing-Guo
  orcidid: 0000-0002-3672-3716
  surname: Wang
  fullname: Wang, Qing-Guo
  organization: Institute for Intelligent Systems, University of Johannesburg, Johannesburg, South Africa
– sequence: 3
  givenname: Dipti
  surname: Srinivasan
  fullname: Srinivasan, Dipti
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 4
  givenname: Hongyi
  surname: Li
  fullname: Li, Hongyi
  email: hongyi.li@bhu.edu.cn
  organization: College of Engineering, Bohai University, Jinzhou, China
– sequence: 5
  givenname: Li
  surname: Yu
  fullname: Yu, Li
  organization: Department of Automation, Zhejiang University of Technology, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28368834$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu2zAQRYkiRfNofqAFCgHdZCOXL1GjZeCkD8BwF3bR7giJGsFMLdIlKaT5-9Kxk0UW5WaIwbmDuXPPyYnzDgl5x-iMMdp8Wi-Xi9WMU1bPuKpBAXtFzjhTvOQC4OT5X_86JZcx3tH8FK2UbN6QUw5CAQh5RjbX8cGZTfDOT7FYpTZhcRuTHdtkvSsGH4obG03AhOXajlis7m0yG-yLuR93W_xbLDHd-_A7Fj9t2uy74-SsOcjn3sUUWutSfEteD-024uWxXpAfn2_X86_l4vuXb_PrRWlExVJZ98AR-srIth04h0ZUhgL0uV-pATrBEZtKgalaIQ2AynCnOuikGUwnpbggV4e5u-D_TBiTHvP-uN22DrNFzQAkU1KAyujHF-idn4LL22lOecOkULXI1IcjNXUj9noX8nHCg366YQbgAJjgYww4aGPTo_-99a1mVO8T04-J6X1i-phYlvIX0qfp_xW9P4gsIj4LaoCGcir-AS4Mooo
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCNS_2020_3035759
crossref_primary_10_1016_j_physa_2022_127851
crossref_primary_10_1109_TNNLS_2019_2927554
crossref_primary_10_1109_TNNLS_2020_3027252
crossref_primary_10_1109_TSMC_2019_2943933
crossref_primary_10_1016_j_nahs_2023_101371
crossref_primary_10_1049_iet_cta_2020_0165
crossref_primary_10_1109_TNNLS_2021_3138979
crossref_primary_10_1109_TNNLS_2021_3110321
crossref_primary_10_1016_j_jfranklin_2024_107403
crossref_primary_10_1109_JSYST_2021_3126753
crossref_primary_10_1016_j_isatra_2021_03_008
crossref_primary_10_1109_TSMC_2020_3048998
crossref_primary_10_1049_iet_cta_2019_0721
crossref_primary_10_1109_TSMC_2019_2963411
crossref_primary_10_1016_j_isatra_2020_08_001
crossref_primary_10_1109_TNNLS_2018_2829149
crossref_primary_10_1007_s10291_023_01501_w
crossref_primary_10_1109_TSMC_2018_2836390
crossref_primary_10_1007_s00034_019_01334_4
crossref_primary_10_1016_j_isatra_2020_01_001
crossref_primary_10_1109_TNNLS_2022_3183447
crossref_primary_10_1007_s12083_018_0671_z
crossref_primary_10_1016_j_amc_2022_127413
crossref_primary_10_1109_TNNLS_2021_3105409
crossref_primary_10_1088_1674_1056_ac0ee9
crossref_primary_10_1109_TCYB_2024_3524515
crossref_primary_10_1109_TIE_2017_2772196
crossref_primary_10_1002_rnc_5010
crossref_primary_10_1016_j_jfranklin_2018_06_004
crossref_primary_10_1109_ACCESS_2017_2741970
crossref_primary_10_1002_acs_3541
crossref_primary_10_1109_TCSI_2020_3034650
crossref_primary_10_1177_0142331218799818
crossref_primary_10_1109_TNSE_2022_3205553
crossref_primary_10_1049_iet_cta_2017_1164
crossref_primary_10_1080_23307706_2025_2451948
crossref_primary_10_1016_j_neucom_2018_07_085
crossref_primary_10_1002_rnc_4736
crossref_primary_10_1109_JSEN_2020_2972315
crossref_primary_10_1016_j_amc_2019_124857
crossref_primary_10_1007_s11071_021_07160_1
crossref_primary_10_1080_00207721_2018_1424967
crossref_primary_10_1002_acs_3675
crossref_primary_10_1109_TII_2018_2805707
crossref_primary_10_1109_TNNLS_2019_2900045
crossref_primary_10_1016_j_isatra_2021_06_013
crossref_primary_10_1109_TASE_2025_3578652
crossref_primary_10_1109_TCSII_2022_3161009
crossref_primary_10_1016_j_jfranklin_2018_07_037
crossref_primary_10_1016_j_ins_2024_120594
crossref_primary_10_1007_s00034_022_02007_5
crossref_primary_10_1002_asjc_1924
crossref_primary_10_1109_ACCESS_2017_2775606
crossref_primary_10_1016_j_ins_2019_09_050
crossref_primary_10_1109_TNNLS_2019_2953649
crossref_primary_10_1109_TNSE_2019_2911713
crossref_primary_10_1016_j_isatra_2021_08_038
crossref_primary_10_1016_j_isatra_2018_08_026
crossref_primary_10_1109_TNSE_2022_3196264
crossref_primary_10_1109_TNNLS_2020_3026646
crossref_primary_10_1109_ACCESS_2018_2807428
crossref_primary_10_1007_s00034_017_0581_y
crossref_primary_10_1007_s00034_018_0836_2
crossref_primary_10_1016_j_neucom_2020_05_003
crossref_primary_10_1038_s41598_020_69775_5
crossref_primary_10_1016_j_neucom_2018_08_015
crossref_primary_10_1016_j_neucom_2015_08_036
crossref_primary_10_1007_s11071_019_05258_1
crossref_primary_10_1016_j_ins_2018_01_021
crossref_primary_10_1016_j_isatra_2021_12_035
crossref_primary_10_1016_j_isatra_2022_12_012
crossref_primary_10_1007_s00034_019_01073_6
crossref_primary_10_1109_TNNLS_2018_2839020
crossref_primary_10_1109_TSMC_2024_3389971
crossref_primary_10_1002_asjc_1869
crossref_primary_10_1109_TFUZZ_2021_3111453
crossref_primary_10_1007_s12555_018_0173_z
crossref_primary_10_1109_TSMC_2017_2776940
crossref_primary_10_1109_TSMC_2018_2852688
crossref_primary_10_1080_00207721_2017_1421723
crossref_primary_10_1109_TNNLS_2024_3474016
crossref_primary_10_1016_j_isatra_2019_02_012
crossref_primary_10_1007_s12555_018_0357_6
crossref_primary_10_1016_j_isatra_2021_01_036
crossref_primary_10_1109_TSMC_2017_2708507
crossref_primary_10_1016_j_neucom_2019_07_045
crossref_primary_10_1002_rnc_5241
crossref_primary_10_1016_j_neucom_2020_09_074
crossref_primary_10_1109_ACCESS_2017_2711488
crossref_primary_10_1109_TCSI_2020_3016994
crossref_primary_10_1016_j_nahs_2018_08_010
crossref_primary_10_1080_00207721_2021_1998719
crossref_primary_10_1002_rnc_7647
crossref_primary_10_1109_TSMC_2018_2882590
crossref_primary_10_1080_00207721_2018_1478466
crossref_primary_10_1109_TCSI_2023_3288744
crossref_primary_10_1016_j_ins_2019_03_019
crossref_primary_10_1002_rnc_5110
crossref_primary_10_1016_j_isatra_2018_12_051
crossref_primary_10_1016_j_jfranklin_2024_106685
Cites_doi 10.1016/j.eswa.2015.02.019
10.1103/PhysRevE.86.046103
10.1109/TAC.2014.2325272
10.1109/TNNLS.2015.2490168
10.1016/j.biosystems.2009.10.003
10.1016/j.automatica.2013.01.038
10.1109/TAC.2008.2007860
10.1103/PhysRevE.84.011120
10.1109/TAC.2005.858689
10.1063/1.2944236
10.1109/TNNLS.2015.2511196
10.1109/TNNLS.2013.2271357
10.1109/TNNLS.2015.2443064
10.1109/TNN.2008.2003250
10.1098/rsif.2014.0378
10.1109/TCYB.2014.2386781
10.1109/TIE.2009.2026375
10.1103/RevModPhys.74.47
10.1109/TNNLS.2014.2316245
10.1016/j.ins.2012.07.003
10.1109/TNNLS.2016.2636325
10.1137/1.9781611970777
10.1109/TSMCB.2012.2202647
10.1063/1.4754436
10.1016/j.physleta.2011.06.054
10.1109/TNNLS.2013.2294727
10.1109/TCYB.2014.2313154
10.1109/TSG.2010.2044814
10.1109/TNNLS.2012.2187926
10.1109/TAC.2008.2012009
10.1080/00207721.2012.684903
10.1016/j.isatra.2016.09.026
10.1109/TNN.2010.2090669
10.1002/rnc.3494
10.1016/j.physrep.2008.09.002
10.1109/TNNLS.2015.2412676
10.1109/TNNLS.2014.2387443
10.1016/j.automatica.2006.05.007
10.1109/TCYB.2016.2553043
10.1016/j.jfranklin.2014.11.006
10.1209/epl/i2004-10365-4
10.1109/TCYB.2016.2536750
10.1016/j.automatica.2014.04.012
10.1109/CDC.1999.831330
10.1109/TNNLS.2015.2503772
10.1109/TSMC.2016.2523935
10.1109/TNNLS.2014.2305443
10.1016/j.arcontrol.2014.09.003
10.1109/TIE.2013.2290757
10.1109/TCSI.2009.2023937
10.1142/S0218127402004292
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2017.2678681
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1746
ExternalDocumentID 28368834
10_1109_TNNLS_2017_2678681
7889020
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61403341; 61573112; 61622302; 61573070
  funderid: 10.13039/501100001809
– fundername: Xiang Jiang Scholars Program
  grantid: XJ2016030
– fundername: National Research Foundation under Energy Innovation Research Programme of Singapore
  grantid: NRF2013EWT-EIRP001-025
  funderid: 10.13039/501100001381
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-7d82e8d5c4aaf228935c088d7d856f8b32ee9568c5a34c886e8db6b8b4cfcb443
IEDL.DBID RIE
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430729100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Mon Sep 29 05:22:53 EDT 2025
Sun Jun 29 15:55:02 EDT 2025
Mon Jul 21 05:47:57 EDT 2025
Sat Nov 29 01:39:56 EST 2025
Tue Nov 18 22:00:29 EST 2025
Wed Aug 27 02:50:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-7d82e8d5c4aaf228935c088d7d856f8b32ee9568c5a34c886e8db6b8b4cfcb443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3672-3716
0000-0001-5140-3588
PMID 28368834
PQID 2029143673
PQPubID 85436
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2017_2678681
proquest_miscellaneous_1884164386
pubmed_primary_28368834
proquest_journals_2029143673
ieee_primary_7889020
crossref_primary_10_1109_TNNLS_2017_2678681
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
su (ref7) 2013; 43
ref22
ref21
li (ref6) 2010; 57
ref28
ref27
ref29
References_xml – ident: ref45
  doi: 10.1016/j.eswa.2015.02.019
– ident: ref5
  doi: 10.1103/PhysRevE.86.046103
– ident: ref29
  doi: 10.1109/TAC.2014.2325272
– ident: ref46
  doi: 10.1109/TNNLS.2015.2490168
– ident: ref24
  doi: 10.1016/j.biosystems.2009.10.003
– ident: ref31
  doi: 10.1016/j.automatica.2013.01.038
– ident: ref42
  doi: 10.1109/TAC.2008.2007860
– ident: ref12
  doi: 10.1103/PhysRevE.84.011120
– ident: ref37
  doi: 10.1109/TAC.2005.858689
– ident: ref10
  doi: 10.1063/1.2944236
– ident: ref50
  doi: 10.1109/TNNLS.2015.2511196
– ident: ref20
  doi: 10.1109/TNNLS.2013.2271357
– ident: ref26
  doi: 10.1109/TNNLS.2015.2443064
– ident: ref35
  doi: 10.1109/TNN.2008.2003250
– ident: ref23
  doi: 10.1098/rsif.2014.0378
– ident: ref34
  doi: 10.1109/TCYB.2014.2386781
– ident: ref41
  doi: 10.1109/TIE.2009.2026375
– ident: ref1
  doi: 10.1103/RevModPhys.74.47
– ident: ref14
  doi: 10.1109/TNNLS.2014.2316245
– ident: ref3
  doi: 10.1016/j.ins.2012.07.003
– ident: ref51
  doi: 10.1109/TNNLS.2016.2636325
– ident: ref47
  doi: 10.1137/1.9781611970777
– volume: 43
  start-page: 394
  year: 2013
  ident: ref7
  article-title: Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks
  publication-title: IEEE Trans Syst Cybern
  doi: 10.1109/TSMCB.2012.2202647
– ident: ref11
  doi: 10.1063/1.4754436
– ident: ref25
  doi: 10.1016/j.physleta.2011.06.054
– ident: ref16
  doi: 10.1109/TNNLS.2013.2294727
– ident: ref2
  doi: 10.1109/TCYB.2014.2313154
– ident: ref22
  doi: 10.1109/TSG.2010.2044814
– ident: ref21
  doi: 10.1109/TNNLS.2012.2187926
– ident: ref38
  doi: 10.1109/TAC.2008.2012009
– ident: ref27
  doi: 10.1080/00207721.2012.684903
– ident: ref32
  doi: 10.1016/j.isatra.2016.09.026
– ident: ref19
  doi: 10.1109/TNN.2010.2090669
– ident: ref44
  doi: 10.1002/rnc.3494
– ident: ref9
  doi: 10.1016/j.physrep.2008.09.002
– ident: ref49
  doi: 10.1109/TNNLS.2015.2412676
– ident: ref13
  doi: 10.1109/TNNLS.2014.2387443
– ident: ref40
  doi: 10.1016/j.automatica.2006.05.007
– ident: ref43
  doi: 10.1109/TCYB.2016.2553043
– ident: ref36
  doi: 10.1016/j.jfranklin.2014.11.006
– ident: ref8
  doi: 10.1209/epl/i2004-10365-4
– ident: ref33
  doi: 10.1109/TCYB.2016.2536750
– ident: ref18
  doi: 10.1016/j.automatica.2014.04.012
– ident: ref39
  doi: 10.1109/CDC.1999.831330
– ident: ref28
  doi: 10.1109/TNNLS.2015.2503772
– ident: ref48
  doi: 10.1109/TSMC.2016.2523935
– ident: ref15
  doi: 10.1109/TNNLS.2014.2305443
– ident: ref17
  doi: 10.1016/j.arcontrol.2014.09.003
– ident: ref30
  doi: 10.1109/TIE.2013.2290757
– volume: 57
  start-page: 213
  year: 2010
  ident: ref6
  article-title: Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint
  publication-title: IEEE Trans Circuits Syst I Reg Papers
  doi: 10.1109/TCSI.2009.2023937
– ident: ref4
  doi: 10.1142/S0218127402004292
SSID ssj0000605649
Score 2.5762818
Snippet This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1732
SubjectTerms Asynchronous switching
Communication
Communications systems
Complex networks
Convexity
Error detection
event-based communication
Optimization
random packet dropouts
signal quantization
State estimation
Stochasticity
switched complex networks
Switches
Switching theory
Symmetric matrices
Synchronization
System theory
Systems analysis
Systems theory
Topology
Title Asynchronous State Estimation for Discrete-Time Switched Complex Networks With Communication Constraints
URI https://ieeexplore.ieee.org/document/7889020
https://www.ncbi.nlm.nih.gov/pubmed/28368834
https://www.proquest.com/docview/2029143673
https://www.proquest.com/docview/1884164386
Volume 29
WOSCitedRecordID wos000430729100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT90wEB4B4tBLgdIlZZEr9QaBxHZs54haUA9VhASId4sc2088CYWKhC7_vjPOIiG1lXqLHNux8s2Mv7E9HoCPWW6tM6jfOLX6VDpLdtAjICFTQUrHs7KJySZ0VZnForxcg-M5FiaEEA-fhRN6jHv5_sE90VLZKbprJdKbdVjXWg-xWvN6Soa8XEW2y3PFUy70YoqRycrT66r6ekUHufQJR_OsDGWIwZlVGSPksykp5lj5O92M087F1v8NeBtejvSSnQ3ysANroX0FW1PqBjZq8i7cnXW_WkcX46LnzyLjZOeo7UMgI0Mmyz6v0KIgpU4pSoRd_VgRvp5RX_fhJ6uG8-Mdu131d-xZnAmjLKAx90TfvYabi_PrT1_SMelC6kSR96n2hgfjCyetXXJ0x0Th0BJ5LC_U0jSCh0Ahhq6wQjpjFFZuVGMa6ZaukVK8gY32oQ3vgFmeCet8aehaNoemQVmxlBpLGp830iSQT_-9duON5DS4-zp6JllZR9hqgq0eYUvgaG7zbbiP45-1dwmUueaIRwL7E7z1qLIdtuMlkkelRQIf5teobLSDYtuAcNS5oV1aKYxK4O0gFnPfkzS9__M39-AFjswMZyX3YaN_fAoHsOm-96vu8RAlemEOo0T_BuF68NY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VUgkulLY8Ai01EjdIm9iO4xwraFXUbYTURewtcmyvulKVoibl8e-ZcR5SJUDqLXJsx8o3M_78mBmAd0lqjNWo3zi1ulhaQ3bQISA-UV5Ky5OiDskm8rLUi0XxZQ0-TL4w3vtw-cwf0GM4y3fX9pa2yg5xuVYgvXkADzMpedp7a007KgkycxX4Lk8Vj7nIF6OXTFIczstydkFXufIDjgZaacoRg3Or0lrIO5NSyLLyb8IZJp6TzfsN-Sk8GQgmO-olYgvWfLMNm2PyBjbo8g5cHrW_G0uhcXHtzwLnZMeo770rI0Muyz6t0KYgqY7JT4Rd_FwRwo5RX1f-Fyv7G-Qt-7bqLtkdTxNGeUBD9omufQZfT47nH0_jIe1CbEWWdnHuNPfaZVYas-S4IBOZRVvksDxTS10L7j05GdrMCGm1Vli5VrWupV3aWkrxHNab68a_BGZ4Iox1habAbBaNgzJiKXMsqV1aSx1BOv73yg4xyWlwV1VYmyRFFWCrCLZqgC2C91Ob731Ejv_W3iFQppoDHhHsjvBWg9K22I4XSB9VLiJ4O71GdaMzFNN4hKNKNZ3TSqFVBC96sZj6HqXp1d-_uQ-PTufns2r2uTx7DY9xlLq_ObkL693Nrd-DDfujW7U3b4Jc_wHdZPM1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+State+Estimation+for+Discrete-Time+Switched+Complex+Networks+With+Communication+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Dan&rft.au=Wang%2C+Qing-Guo&rft.au=Srinivasan%2C+Dipti&rft.au=Li%2C+Hongyi&rft.date=2018-05-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=29&rft.issue=5&rft.spage=1732&rft_id=info:doi/10.1109%2FTNNLS.2017.2678681&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon