Towards a Complete 3D Morphable Model of the Human Head

Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two method...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 43; číslo 11; s. 4142 - 4160
Hlavní autoři: Ploumpis, Stylianos, Ververas, Evangelos, Sullivan, Eimear Oa, Moschoglou, Stylianos, Wang, Haoyang, Pears, Nick, Smith, William A. P., Gecer, Baris, Zafeiriou, Stefanos
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: (i). use a regressor to complete missing parts of one model using the other, and (ii). use the Gaussian Process framework to blend covariance matrices from multiple models. Thus, we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color.
AbstractList Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: (i). use a regressor to complete missing parts of one model using the other, and (ii). use the Gaussian Process framework to blend covariance matrices from multiple models. Thus, we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color.
Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: (i). use a regressor to complete missing parts of one model using the other, and (ii). use the Gaussian Process framework to blend covariance matrices from multiple models. Thus, we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color.Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: (i). use a regressor to complete missing parts of one model using the other, and (ii). use the Gaussian Process framework to blend covariance matrices from multiple models. Thus, we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color.
Three-dimensional Morphable Models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: i. use a regressor to complete missing parts of one model using the other, ii. use the Gaussian Process framework to blend covariance matrices from multiple models. Thus we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color.
Author Ploumpis, Stylianos
Sullivan, Eimear Oa
Smith, William A. P.
Ververas, Evangelos
Moschoglou, Stylianos
Pears, Nick
Wang, Haoyang
Zafeiriou, Stefanos
Gecer, Baris
Author_xml – sequence: 1
  givenname: Stylianos
  orcidid: 0000-0002-4836-1513
  surname: Ploumpis
  fullname: Ploumpis, Stylianos
  email: s.ploumpis@imperial.ac.uk
  organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 2
  givenname: Evangelos
  orcidid: 0000-0003-4345-1744
  surname: Ververas
  fullname: Ververas, Evangelos
  email: e.ververas16@imperial.ac.uk
  organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 3
  givenname: Eimear Oa
  orcidid: 0000-0003-0525-3341
  surname: Sullivan
  fullname: Sullivan, Eimear Oa
  email: e.o-sullivan16@imperial.ac.uk
  organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 4
  givenname: Stylianos
  orcidid: 0000-0001-7421-1335
  surname: Moschoglou
  fullname: Moschoglou, Stylianos
  email: s.moschoglou@imperial.ac.uk
  organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 5
  givenname: Haoyang
  orcidid: 0000-0001-8236-6628
  surname: Wang
  fullname: Wang, Haoyang
  email: haoyang.wang15@imperial.ac.uk
  organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 6
  givenname: Nick
  orcidid: 0000-0001-9513-5634
  surname: Pears
  fullname: Pears, Nick
  email: nick.pears@york.ac.uk
  organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 7
  givenname: William A. P.
  orcidid: 0000-0002-6047-0413
  surname: Smith
  fullname: Smith, William A. P.
  email: william.smith@york.ac.uk
  organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 8
  givenname: Baris
  orcidid: 0000-0002-5684-2843
  surname: Gecer
  fullname: Gecer, Baris
  email: b.gecer@imperial.ac.uk
  organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 9
  givenname: Stefanos
  orcidid: 0000-0002-5222-1740
  surname: Zafeiriou
  fullname: Zafeiriou, Stefanos
  email: s.zafeiriou@imperial.ac.uk
  organization: Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32356737$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUQC1URMvjB0BCkVhYUvxIfO0RlUeRQDCU2XKdGxGUxMVOhPh7UloYOjD5DudcXZ9DMmp9i4ScMjpljOqrxcv108OUU06nXGvGcrpHJpxJmmqu-YhMKJM8VYqrMTmM8Z1SluVUHJCx4CKXIGBCYOE_bShiYpOZb1Y1dpiIm-TJh9WbXdY4TAXWiS-T7g2Ted_YNpmjLY7JfmnriCfb94i83t0uZvP08fn-YXb9mDqRsy4F4AoLmZUZuLIUUDi9LJxCKREshyyjipYal1lJrWPKUedA2MKBYxKcFOKIXG72roL_6DF2pqmiw7q2Lfo-Gi40SAk5yAG92EHffR_a4TrDc1DDl_NMDdT5luqXDRZmFarGhi_zm2QA1AZwwccYsDSu6mxX-bYLtqoNo2Zd3_zUN-v6Zlt_UPmO-rv9X-lsI1WI-CdoqjgDJb4Bd6uNBA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3390_diagnostics12071516
crossref_primary_10_4103_jpn_JPN_48_22
crossref_primary_10_1515_teme_2021_0082
crossref_primary_10_1109_TMM_2024_3405721
crossref_primary_10_1109_MPRV_2023_3276471
crossref_primary_10_1111_cgf_14793
crossref_primary_10_1016_j_compbiomed_2024_108689
crossref_primary_10_1007_s11042_024_19583_0
crossref_primary_10_1109_TVCG_2025_3530484
crossref_primary_10_1109_TMM_2024_3521835
crossref_primary_10_1109_TVCG_2023_3284500
crossref_primary_10_1016_j_cag_2025_104214
crossref_primary_10_1109_TPAMI_2021_3090942
crossref_primary_10_1145_3635717
crossref_primary_10_1002_ar_24582
crossref_primary_10_1016_j_imavis_2024_105075
crossref_primary_10_1109_ACCESS_2020_3031886
crossref_primary_10_1016_j_bonr_2022_101528
crossref_primary_10_1007_s11263_021_01494_4
crossref_primary_10_1109_TPAMI_2021_3084524
crossref_primary_10_1109_ACCESS_2024_3396632
crossref_primary_10_1111_cgf_14641
crossref_primary_10_1016_j_prosdent_2024_03_006
crossref_primary_10_1038_s41591_022_01966_1
crossref_primary_10_1145_3528223_3530143
crossref_primary_10_1016_j_displa_2024_102725
crossref_primary_10_1007_s11263_023_01825_7
crossref_primary_10_1109_TPAMI_2021_3125598
crossref_primary_10_1109_ACCESS_2021_3111811
crossref_primary_10_1016_j_cag_2025_104324
crossref_primary_10_1145_3550454_3555462
crossref_primary_10_1109_LSP_2023_3238908
crossref_primary_10_1016_j_imavis_2024_105043
crossref_primary_10_1145_3450626_3459936
Cites_doi 10.1109/FG.2017.79
10.1109/FG.2018.00064
10.1109/TPAMI.2009.30
10.1007/978-3-030-01261-8_44
10.1111/j.1467-8659.2009.01373.x
10.1109/TPAMI.2014.2313123
10.1109/CVPR.2015.7299081
10.1145/311535.311556
10.1109/ICCV.2015.411
10.1016/j.patcog.2017.09.006
10.1109/TPAMI.2017.2739743
10.1109/CVPR.2018.00767
10.1109/TPAMI.2003.1227983
10.1109/ICCV.2017.335
10.1145/2431211.2431221
10.1109/CVPR.2016.598
10.1109/CVPR.2019.00125
10.1007/s11263-019-01151-x
10.1109/FG.2018.00065
10.1007/978-3-319-46475-6_23
10.1109/CVPR.2017.580
10.5220/0005669500790086
10.1109/CVPR.2017.163
10.1145/3130800.31310887
10.1109/CVPR.2016.23
10.1007/978-3-030-01219-9_43
10.1109/CVPR.2019.00122
10.1145/3130800.3130813
10.1145/3130800.3130883
10.1109/FG.2018.00027
10.1016/j.cviu.2014.05.005
10.1007/3-540-44887-X_8
10.1109/ICASSP.2016.7471981
10.1145/2661229.2661285
10.1145/2578153.2578190
10.1007/s11263-011-0436-0
10.1109/CVPRW.2017.250
10.1109/TPAMI.2012.206
10.1109/FG.2018.00021
10.1109/ICPR.2014.210
10.1109/TMM.2013.2282134
10.1007/s11263-008-0152-6
10.1007/978-3-319-46484-8_5
10.1117/12.849965
10.1109/CVPR.2007.383165
10.1007/978-3-319-46448-0_18
10.1109/CVPR.2018.00917
10.1109/CVPR.2019.01119
10.1109/AVSS.2009.58
10.1145/882262.882311
10.1016/j.jcms.2015.02.005
10.1109/CVPR.2014.235
10.1049/iet-bmt.2011.0003
10.1145/2897824.2925962
10.1109/CVPR.2018.00868
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.2991150
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 4160
ExternalDocumentID 32356737
10_1109_TPAMI_2020_2991150
9082178
Genre orig-research
Journal Article
GrantInformation_xml – fundername: EPSRC Project
  grantid: EP/N007743/1
– fundername: Large Scale Shape Analysis of Deformable Models of Humans
  grantid: EP/S010203/1
– fundername: Royal Academy of Engineering
  funderid: 10.13039/501100000287
– fundername: Google Faculty Award
– fundername: Google Daydream Award
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-7728ed64f47cff37dc9bdc8e66e7a2744080f9eb4f0ac18c0cc73adc7c167c633
IEDL.DBID RIE
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702649700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 22:27:40 EDT 2025
Mon Jun 30 05:51:37 EDT 2025
Wed Feb 19 02:30:42 EST 2025
Tue Nov 18 21:24:08 EST 2025
Sat Nov 29 05:15:59 EST 2025
Wed Aug 27 02:26:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-7728ed64f47cff37dc9bdc8e66e7a2744080f9eb4f0ac18c0cc73adc7c167c633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7421-1335
0000-0002-6047-0413
0000-0002-4836-1513
0000-0001-8236-6628
0000-0003-0525-3341
0000-0002-5222-1740
0000-0001-9513-5634
0000-0003-4345-1744
0000-0002-5684-2843
PMID 32356737
PQID 2578235548
PQPubID 85458
PageCount 19
ParticipantIDs proquest_miscellaneous_2397667576
proquest_journals_2578235548
pubmed_primary_32356737
ieee_primary_9082178
crossref_citationtrail_10_1109_TPAMI_2020_2991150
crossref_primary_10_1109_TPAMI_2020_2991150
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
moschoglou (ref52) 2019
ref12
ref59
ref58
ref14
ref53
ref55
ref11
de smet and (ref21) 2010
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
egger (ref15) 2019
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
blackwell (ref30) 2002
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref65
ref28
ref27
zhu (ref10) 2015
ref29
ref60
ref62
davies (ref54) 2008
ref61
zhu (ref13) 2015
References_xml – ident: ref58
  doi: 10.1109/FG.2017.79
– start-page: 1
  year: 2015
  ident: ref10
  article-title: Discriminative 3D morphable model fitting
  publication-title: Proc 11th IEEE Int Conf Workshops Autom Face Gesture Recognit
– ident: ref50
  doi: 10.1109/FG.2018.00064
– ident: ref33
  doi: 10.1109/TPAMI.2009.30
– year: 2019
  ident: ref15
  article-title: 3D morphable face models-past, present and future
– ident: ref35
  doi: 10.1007/978-3-030-01261-8_44
– ident: ref5
  doi: 10.1111/j.1467-8659.2009.01373.x
– ident: ref64
  doi: 10.1109/TPAMI.2014.2313123
– ident: ref34
  doi: 10.1109/CVPR.2015.7299081
– year: 2008
  ident: ref54
  publication-title: Statistical Models of Shape Optimisation and Evaluation
– ident: ref17
  doi: 10.1145/311535.311556
– ident: ref56
  doi: 10.1109/ICCV.2015.411
– ident: ref48
  doi: 10.1016/j.patcog.2017.09.006
– ident: ref46
  doi: 10.1109/TPAMI.2017.2739743
– ident: ref27
  doi: 10.1109/CVPR.2018.00767
– ident: ref1
  doi: 10.1109/TPAMI.2003.1227983
– ident: ref14
  doi: 10.1109/ICCV.2017.335
– ident: ref40
  doi: 10.1145/2431211.2431221
– year: 2002
  ident: ref30
  article-title: Civilian American and European surface anthropometry resource (CAESAR). Volume 2: Descriptions
– ident: ref20
  doi: 10.1109/CVPR.2016.598
– ident: ref23
  doi: 10.1109/CVPR.2019.00125
– ident: ref24
  doi: 10.1007/s11263-019-01151-x
– ident: ref44
  doi: 10.1109/FG.2018.00065
– ident: ref57
  doi: 10.1007/978-3-319-46475-6_23
– year: 2019
  ident: ref52
  article-title: 3DFaceGAN: Adversarial nets for 3D face representation, generation, and translation
– ident: ref22
  doi: 10.1109/CVPR.2017.580
– ident: ref9
  doi: 10.5220/0005669500790086
– ident: ref28
  doi: 10.1109/CVPR.2017.163
– ident: ref32
  doi: 10.1145/3130800.31310887
– ident: ref11
  doi: 10.1109/CVPR.2016.23
– ident: ref31
  doi: 10.1007/978-3-030-01219-9_43
– ident: ref62
  doi: 10.1109/CVPR.2015.7299081
– ident: ref26
  doi: 10.1109/CVPR.2019.00122
– ident: ref29
  doi: 10.1145/3130800.3130813
– ident: ref7
  doi: 10.1145/3130800.3130883
– ident: ref25
  doi: 10.1109/FG.2018.00027
– ident: ref55
  doi: 10.1016/j.cviu.2014.05.005
– ident: ref12
  doi: 10.1007/3-540-44887-X_8
– start-page: 276
  year: 2010
  ident: ref21
  article-title: Optimal regions for linear model-based 3D face reconstruction
  publication-title: Proc Asian Conf Comput Vis
– ident: ref43
  doi: 10.1109/ICASSP.2016.7471981
– ident: ref37
  doi: 10.1145/2661229.2661285
– ident: ref61
  doi: 10.1145/2578153.2578190
– ident: ref41
  doi: 10.1007/s11263-011-0436-0
– ident: ref51
  doi: 10.1109/CVPRW.2017.250
– ident: ref3
  doi: 10.1109/TPAMI.2012.206
– ident: ref47
  doi: 10.1109/FG.2018.00021
– ident: ref65
  doi: 10.1109/ICPR.2014.210
– start-page: 787
  year: 2015
  ident: ref13
  article-title: High-fidelity pose and expression normalization for face recognition in the wild
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref45
  doi: 10.1109/TMM.2013.2282134
– ident: ref59
  doi: 10.1007/s11263-008-0152-6
– ident: ref2
  doi: 10.1007/978-3-319-46484-8_5
– ident: ref42
  doi: 10.1117/12.849965
– ident: ref19
  doi: 10.1109/CVPR.2007.383165
– ident: ref60
  doi: 10.1007/978-3-319-46448-0_18
– ident: ref53
  doi: 10.1109/CVPR.2018.00917
– ident: ref38
  doi: 10.1007/978-3-319-46448-0_18
– ident: ref16
  doi: 10.1109/CVPR.2019.01119
– ident: ref18
  doi: 10.1109/AVSS.2009.58
– ident: ref6
  doi: 10.1145/882262.882311
– ident: ref4
  doi: 10.1016/j.jcms.2015.02.005
– ident: ref63
  doi: 10.1109/CVPR.2014.235
– ident: ref39
  doi: 10.1049/iet-bmt.2011.0003
– ident: ref36
  doi: 10.1145/2897824.2925962
– ident: ref8
  doi: 10.1109/CVPR.2018.00868
– ident: ref49
  doi: 10.1109/TMM.2013.2282134
SSID ssj0014503
Score 2.6377714
Snippet Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the...
Three-dimensional Morphable Models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4142
SubjectTerms 3D reconstruction
3DMM
Computational modeling
Covariance matrix
craniofacial 3DMM
Cranium
Ear
Eye movements
Face
Gaussian process
Head
Image reconstruction
Magnetic heads
morphable model combination
Shape
Three dimensional models
Three-dimensional displays
Tongue
Title Towards a Complete 3D Morphable Model of the Human Head
URI https://ieeexplore.ieee.org/document/9082178
https://www.ncbi.nlm.nih.gov/pubmed/32356737
https://www.proquest.com/docview/2578235548
https://www.proquest.com/docview/2397667576
Volume 43
WOSCitedRecordID wos000702649700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9USrEPtVXbnl-s4FuNJtlkJ3kUP7BQxYcT7i3sTjYgyKV4d_79zuwloYIt-BbYzQf7m9n8ZndnfgBHSYZ1nBNFCYdXUeati0pX5JElZ1xGJaZ1QPo33t4Wk0l5twLHQy6M9z4cPvMnchn28uuWFrJUdiry3AkWq7CKiMtcrWHHIMuDCjIzGPZwDiP6BJm4PB3fnd384lAwjU948hUKtA4fdapz0Wh59T8KAiv_5prhn3O18b6v_QKfO26pzpbG8BVW_HQTNnrdBtW58SZ8-qsI4RbgOJycnSmrpCvj6JW-UDctIyB5VUrk0h5V2yjmiios-qtrtoxtuL-6HJ9fR52cQkQ6T-bCowtfm6zJkJpGY02lq6nwxni0oVBgETeld1kTW0oKiolQ25qQEoNktP4Ga9N26n-AQuOscdrEyAzAWlc2OYd5HhsOcok5wAiSflAr6mqNi-TFYxVijrisAiaVYFJ1mIzg53DPn2Wljf_23pIRH3p2gz2CvR67qnPGWSWzUiq8ipsPh2Z2I9kbsVPfLriP8DIOntCM4PsS8-HZvansvP3OXVhP5aBLSFDcg7X508Lvwwd6nj_Mng7YVifFQbDVF2Kr3_M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RWhU4AAVKt9DiSr2VQBI7dnJEbdGi7q44bCVukT1xJCS0Qexufz8z3iQqUqnELZKdD_nNOG9szzyAr4kyVZwhRgmFV5Hy1kWFy7PIotNOYWHSKiA9MpNJfnNTXK_BaZ8L470Ph8_8GV-GvfyqwSUvlZ2zPHdi8lfwOlMqTVbZWv2egcqCDjJxGPJxCiS6FJm4OJ9eX4yvKBhM4zOafpkEbcJbmcqMVVqe_JGCxMrzbDP8dS53Xva9u7DdsktxsTKHd7DmZ3uw0yk3iNaR92DrrzKE-2Cm4ezsXFjBXQlJL-QPMW4IA86sEiyYdieaWhBbFGHZXwzJNg7g9-XP6fdh1AoqRCizZMFMOveVVrUyWNfSVFi4CnOvtTc2lArM47rwTtWxxSTHGNFIW6HBRBvUUr6H9Vkz8x9AGO2sdlLHhjiAta6oCZLcm5rCXCQWMICkG9QS22rjLHpxV4aoIy7KgEnJmJQtJgP41t9zv6q18d_e-zzifc92sAdw3GFXtu44L3leSplZUfOXvpkciXdH7Mw3S-rDzIzCJ6MHcLjCvH92Zyof__3OE9gYTsejcnQ1-XUEmykfewnpisewvnhY-k_wBv8sbucPn4PFPgLs0OJS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+complete+3D+morphable+model+of+the+human+head&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Ploumpis%2C+Stylianos&rft.au=Ververas%2C+Evangelos&rft.au=O%27+Sullivan%2C+Eimear&rft.au=Moschoglou%2C+Stylianos&rft.date=2021-11-01&rft.eissn=1939-3539&rft_id=info:doi/10.1109%2FTPAMI.2020.2991150&rft_id=info%3Apmid%2F32356737&rft.externalDocID=32356737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon