Learning Hierarchical Variational Autoencoders With Mutual Information Maximization for Autoregressive Sequence Modeling

Variational autoencoders (VAEs) are a class of effective deep generative models, with the objective to approximate the true, but unknown data distribution. VAEs make use of latent variables to capture high-level semantics so as to reconstruct the data well with the help of informative latent variabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 45; H. 2; S. 1949 - 1962
Hauptverfasser: Qian, Dong, Cheung, William K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Variational autoencoders (VAEs) are a class of effective deep generative models, with the objective to approximate the true, but unknown data distribution. VAEs make use of latent variables to capture high-level semantics so as to reconstruct the data well with the help of informative latent variables. Yet, training VAEs tends to suffer from posterior collapse, when the decoder is parameterized by an autoregressive model for sequence generation. VAEs can be further enhanced by introducing multiple layers of latent variables, but the posterior collapse issue hinders the adoption of such hierarchical VAEs in real-world applications. In this paper, we introduce InfoMaxHVAE, which integrates mutual information estimated via neural networks into hierarchical VAEs to alleviate posterior collapse, when powerful autoregressive models are used for modeling sequences. Experimental results on a number of text and image datasets show that InfoMaxHVAE can outperform the state-of-the-art baselines and exhibits less posterior collapse. We further show that InfoMaxHVAE can shape a coarse-to-fine hierarchical organization of the latent space.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2022.3160509