Learning Raw Image Reconstruction-Aware Deep Image Compressors
Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image fidelity errors in the nonlinear standard RGB (sRGB) color space....
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 42; H. 4; S. 1013 - 1019 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image fidelity errors in the nonlinear standard RGB (sRGB) color space. However, for many computer vision tasks, the sensor's linear raw-RGB image is desirable. Recent work has shown that the original raw-RGB image can be reconstructed using only small amounts of metadata embedded inside the JPEG image [1]. However, [1] relied on the conventional JPEG encoding that is unaware of the raw-RGB reconstruction task. In this paper, we examine the ability of deep image compressors to be "aware" of the additional objective of raw reconstruction. Towards this goal, we describe a general framework that enables deep networks targeting image compression to jointly consider both image fidelity errors and raw reconstruction errors. We describe this approach in two scenarios: (1) the network is trained from scratch using our proposed joint loss, and (2) a network originally trained only for sRGB fidelity loss is later fine-tuned to incorporate our raw reconstruction loss. When compared to sRGB fidelity-only compression, our combined loss leads to appreciable improvements in PSNR of the raw reconstruction with only minor impact on sRGB fidelity as measured by MS-SSIM. |
|---|---|
| AbstractList | Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image fidelity errors in the nonlinear standard RGB (sRGB) color space. However, for many computer vision tasks, the sensor's linear raw-RGB image is desirable. Recent work has shown that the original raw-RGB image can be reconstructed using only small amounts of metadata embedded inside the JPEG image [1]. However, [1] relied on the conventional JPEG encoding that is unaware of the raw-RGB reconstruction task. In this paper, we examine the ability of deep image compressors to be "aware" of the additional objective of raw reconstruction. Towards this goal, we describe a general framework that enables deep networks targeting image compression to jointly consider both image fidelity errors and raw reconstruction errors. We describe this approach in two scenarios: (1) the network is trained from scratch using our proposed joint loss, and (2) a network originally trained only for sRGB fidelity loss is later fine-tuned to incorporate our raw reconstruction loss. When compared to sRGB fidelity-only compression, our combined loss leads to appreciable improvements in PSNR of the raw reconstruction with only minor impact on sRGB fidelity as measured by MS-SSIM. Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image fidelity errors in the nonlinear standard RGB (sRGB) color space. However, for many computer vision tasks, the sensor's linear raw-RGB image is desirable. Recent work has shown that the original raw-RGB image can be reconstructed using only small amounts of metadata embedded inside the JPEG image [1]. However, [1] relied on the conventional JPEG encoding that is unaware of the raw-RGB reconstruction task. In this paper, we examine the ability of deep image compressors to be "aware" of the additional objective of raw reconstruction. Towards this goal, we describe a general framework that enables deep networks targeting image compression to jointly consider both image fidelity errors and raw reconstruction errors. We describe this approach in two scenarios: (1) the network is trained from scratch using our proposed joint loss, and (2) a network originally trained only for sRGB fidelity loss is later fine-tuned to incorporate our raw reconstruction loss. When compared to sRGB fidelity-only compression, our combined loss leads to appreciable improvements in PSNR of the raw reconstruction with only minor impact on sRGB fidelity as measured by MS-SSIM.Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image fidelity errors in the nonlinear standard RGB (sRGB) color space. However, for many computer vision tasks, the sensor's linear raw-RGB image is desirable. Recent work has shown that the original raw-RGB image can be reconstructed using only small amounts of metadata embedded inside the JPEG image [1]. However, [1] relied on the conventional JPEG encoding that is unaware of the raw-RGB reconstruction task. In this paper, we examine the ability of deep image compressors to be "aware" of the additional objective of raw reconstruction. Towards this goal, we describe a general framework that enables deep networks targeting image compression to jointly consider both image fidelity errors and raw reconstruction errors. We describe this approach in two scenarios: (1) the network is trained from scratch using our proposed joint loss, and (2) a network originally trained only for sRGB fidelity loss is later fine-tuned to incorporate our raw reconstruction loss. When compared to sRGB fidelity-only compression, our combined loss leads to appreciable improvements in PSNR of the raw reconstruction with only minor impact on sRGB fidelity as measured by MS-SSIM. |
| Author | Punnappurath, Abhijith Brown, Michael S. |
| Author_xml | – sequence: 1 givenname: Abhijith orcidid: 0000-0003-3438-5896 surname: Punnappurath fullname: Punnappurath, Abhijith email: pabhijith@eecs.yorku.ca organization: Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada – sequence: 2 givenname: Michael S. surname: Brown fullname: Brown, Michael S. email: mbrown@eecs.yorku.ca organization: Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30843804$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1LAzEQhoNU7If-AQUpePGydZJs0uxFKPWrUFFKPYeYnS1bupua7FL8925t66EHT3OY53kZ5u2SVulKJOSSwoBSSO7m76PXyYABTQYsAQ6SnZAOoxKihCWsRTpAJYuUYqpNuiEsAWgsgJ-RNgcVcwVxh9xP0fgyLxf9mdn0J4VZYH-G1pWh8rWtcldGo43x2H9AXO_3Y1esPYbgfDgnp5lZBbzYzx75eHqcj1-i6dvzZDyaRpYLWkUSUQnDJUjIBM3SOLMihYxKY6gVEGcpFyBEikMlh0Y2S8ubwYdJI6C1vEdud7lr775qDJUu8mBxtTIlujpoRpVKFIASDXpzhC5d7cvmOs34MJYJ5zxuqOs9VX8WmOq1zwvjv_XhMw2gdoD1LgSPmbZ5ZbYPqbzJV5qC3pagf0vQ2xL0voRGZUfqIf1f6Won5Yj4JygpFAXFfwCinpCR |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_32604_cmc_2020_014227 crossref_primary_10_1016_j_cviu_2022_103525 crossref_primary_10_3390_s24061743 crossref_primary_10_1109_TIM_2025_3544706 crossref_primary_10_1109_COMST_2023_3333342 crossref_primary_10_1109_TPAMI_2024_3356557 crossref_primary_10_1016_j_sigpro_2021_108346 crossref_primary_10_1109_TCSII_2021_3058245 crossref_primary_10_1016_j_fsidi_2021_301108 crossref_primary_10_1109_TCSVT_2023_3241319 crossref_primary_10_1109_TIP_2022_3214077 crossref_primary_10_3390_chemosensors10050164 crossref_primary_10_3390_e23121680 crossref_primary_10_1109_ACCESS_2023_3324403 crossref_primary_10_1007_s11263_024_02143_2 crossref_primary_10_1016_j_engappai_2023_106361 crossref_primary_10_1145_3592615 |
| Cites_doi | 10.1109/ICCV.2011.6126492 10.1007/978-3-642-33718-5_40 10.1109/CVPR.2016.183 10.1109/TPAMI.2003.1240119 10.1109/TPAMI.2012.58 10.1109/30.125072 10.1109/TPAMI.2014.2318713 10.1109/CVPR.2016.57 10.1145/1401132.1401174 10.5244/C.23.51 10.1109/CVPR.2018.00674 10.1109/ICCV.2015.42 10.1007/978-3-319-46448-0_26 10.1109/CVPR.2017.577 10.1109/ACSSC.2003.1292216 10.1109/CVPR.2018.00462 10.1109/ICCV.2017.190 10.1109/CVPR.1999.786966 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2019.2903062 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (IEEE/IET Electronic Library - IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore (IEEE/IET Electronic Library - IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 1019 |
| ExternalDocumentID | 30843804 10_1109_TPAMI_2019_2903062 8658108 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Canada First Research Excellence Fund funderid: 10.13039/501100010785 – fundername: Natural Sciences and Engineering Research Council of Canada; NSERC funderid: 10.13039/501100000038 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM PKN RIC RIG RNI RZB VH1 XJT Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-6ee85a36060f51fd4fc5d0f16aa1c504fd35055de7867a6c5dc3a6c37960fecc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526541100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 06:51:22 EDT 2025 Sun Nov 09 08:32:36 EST 2025 Wed Feb 19 02:30:52 EST 2025 Tue Nov 18 22:27:46 EST 2025 Sat Nov 29 05:15:58 EST 2025 Wed Aug 27 02:35:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-6ee85a36060f51fd4fc5d0f16aa1c504fd35055de7867a6c5dc3a6c37960fecc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3438-5896 |
| PMID | 30843804 |
| PQID | 2374693334 |
| PQPubID | 85458 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2188980085 proquest_journals_2374693334 pubmed_primary_30843804 ieee_primary_8658108 crossref_citationtrail_10_1109_TPAMI_2019_2903062 crossref_primary_10_1109_TPAMI_2019_2903062 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref31 ref30 ref2 ref1 ref19 (ref33) 0 theis (ref17) 2017 gregor (ref13) 2016 ballé (ref12) 2018 toderici (ref18) 2015; abs 1511 6085 (ref22) 0 kim (ref5) 2012; 34 ref24 rippel (ref16) 2017 ref26 ref25 ref20 kingma (ref32) 2014; abs 1412 6980 li (ref15) 2017; abs 1703 10553 ref28 mann (ref6) 1995 ref27 ref29 ref8 bellard (ref23) 0 ref7 agustsson (ref10) 2017 johnston (ref14) 2017; abs 1703 10114 ref9 ref4 ref3 taubman (ref21) 2001 ballé (ref11) 2017 |
| References_xml | – ident: ref26 doi: 10.1109/ICCV.2011.6126492 – ident: ref27 doi: 10.1007/978-3-642-33718-5_40 – start-page: 442 year: 1995 ident: ref6 article-title: On being 'undigital' with digital cameras: Extending dynamic range by combining differently exposed pictures publication-title: Society for Imaging Science and Technology – ident: ref1 doi: 10.1109/CVPR.2016.183 – ident: ref4 doi: 10.1109/TPAMI.2003.1240119 – volume: abs 1412 6980 year: 2014 ident: ref32 article-title: Adam: A method for stochastic optimization publication-title: CoRR – volume: 34 start-page: 2289 year: 2012 ident: ref5 article-title: A new in-camera imaging model for color computer vision and its application publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.58 – ident: ref9 doi: 10.1109/30.125072 – start-page: 2922 year: 2017 ident: ref16 article-title: Real-time adaptive image compression publication-title: Proc Int Conf Mach Learn – year: 0 ident: ref33 article-title: Kodak lossless true color image suite (PhotoCD PCD0992). – ident: ref2 doi: 10.1109/TPAMI.2014.2318713 – volume: abs 1703 10553 year: 2017 ident: ref15 article-title: Learning convolutional networks for content-weighted image compression publication-title: CoRR – ident: ref28 doi: 10.1109/CVPR.2016.57 – ident: ref3 doi: 10.1145/1401132.1401174 – ident: ref25 doi: 10.5244/C.23.51 – year: 0 ident: ref22 article-title: WebP image format – year: 2017 ident: ref11 article-title: End-to-end optimized image compression publication-title: Proc Int Conf Learn Representations – volume: abs 1511 6085 year: 2015 ident: ref18 article-title: Variable rate image compression with recurrent neural networks publication-title: CoRR – year: 0 ident: ref23 article-title: BPG image format – ident: ref30 doi: 10.1109/CVPR.2018.00674 – year: 2001 ident: ref21 publication-title: JPEG 2000 Image Compression Fundamentals Standards and Practice – start-page: 1142 year: 2017 ident: ref10 article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations publication-title: Proc Conf Neural Inf Process Syst – year: 2018 ident: ref12 article-title: Variational image compression with a scale hyperprior publication-title: Proc Int Conf Learn Representations – ident: ref29 doi: 10.1109/ICCV.2015.42 – ident: ref31 doi: 10.1007/978-3-319-46448-0_26 – ident: ref19 doi: 10.1109/CVPR.2017.577 – ident: ref20 doi: 10.1109/ACSSC.2003.1292216 – volume: abs 1703 10114 year: 2017 ident: ref14 article-title: Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks publication-title: CoRR – ident: ref24 doi: 10.1109/CVPR.2018.00462 – ident: ref8 doi: 10.1109/ICCV.2017.190 – start-page: 3556 year: 2016 ident: ref13 article-title: Towards conceptual compression publication-title: Proc Conf Neural Inf Process Syst – ident: ref7 doi: 10.1109/CVPR.1999.786966 – year: 2017 ident: ref17 article-title: Lossy image compression with compressive autoencoders publication-title: Proc Int Conf Learn Representations |
| SSID | ssj0014503 |
| Score | 2.4630325 |
| Snippet | Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1013 |
| SubjectTerms | Accuracy Algorithms Calibration Cameras Compressors Computer vision Deep learning deep learning-based image compression Image coding Image compression Image reconstruction JPEG encoders-decoders Machine learning radiometric calibration raw image reconstruction Table lookup Transform coding |
| Title | Learning Raw Image Reconstruction-Aware Deep Image Compressors |
| URI | https://ieeexplore.ieee.org/document/8658108 https://www.ncbi.nlm.nih.gov/pubmed/30843804 https://www.proquest.com/docview/2374693334 https://www.proquest.com/docview/2188980085 |
| Volume | 42 |
| WOSCitedRecordID | wos000526541100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore (IEEE/IET Electronic Library - IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMcKLQ8AqUKEjdIG8dObF-QVkBFD1QVKtLeIj8mFRLsVrst_fvMeJ0AEiBxSiQ7ieWZsefLeOYDeCkG7IJDVTlpsVJGhcoYryqrvQjetNE3MZFN6NNTM5_bsy14PeXCIGI6fIaHfJti-XEZrvlX2ZGh7VJwZu8trbtNrtYUMVBtYkEmD4YsnGDEmCBT26Pzs9nHEz7FZQ8byz4yU9jI2nCxdfXbfpQIVv7ua6Y953jn_0Z7H-5l37KcbZThAWzhYhd2Rt6GMpvxLtz9pQjhHrzJJVYvyk_upjz5RgtMyaD0Z2nZanbjVli-Q7zM7fxOxunL1fohfD5-f_72Q5VZFaogW3FVdYimdZKASz20YohqCG2sB9E5J0JbqyFK8oraiNp02nXUGCRdpCasM5DA5SPYXiwX-ATKxnutOJAapVYq0hpuvfXoOTbYDHUoQIxz24dccpyZL772CXrUtk-i6Vk0fRZNAa-mZy43BTf-2XuPJ37qmee8gP1RhH22yXXf0CA7K6VUBbyYmsmaOETiFri8pj7CGGvYDy3g8Ub007tHjXn6528-gzsNY_F0qmcftklG-Bxuh-9XX9arA1LZuTlIKvsDEF7kew |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB7EFmwfaqu13artCn1rVzeb7G7yIhxa8ageUq7g25IfsyLondxp_febyWW3Cm3Bp11INhsymWS-TGY-gM-sxcpqFJnmCjMhhc2kNCJTtWHWyNKZwgWyiXo0kufn6mwJvvaxMIgYLp_hLr0GX76b2js6KtuTfrtkFNn7jJizYrRW7zMQZeBB9jaM13EPJLoQmVztjc8Gp0O6x6V2C0VWMpHY8FxSunXxaEcKFCv_tjbDrnO0-rT-voZX0bpMB4vp8AaWcLIGqx1zQxoVeQ1ePkhDuA77McnqRfpD36fDa7_EpARL_ySXzQb3eobpIeJNLKc2CalPZ_O38PPo2_jgOIu8CpnlJbvNKkRZau6hS96WrHWitaXLW1ZpzWyZi9ZxbxeVDmtZ1bryhZb7B6892mm9yPkGLE-mE3wPaWFMLciV6ngthPOruDLKoCHvYNHmNgHWjW1jY9Jx4r64agL4yFUTRNOQaJoomgS-9N_cLFJu_Lf2Og18XzOOeQJbnQibqJXzpvCdrBTnXCSw0xd7fSIniZ7g9M7XYVIqSZZoAu8Wou_b7mbMh7__8xOsHI9PT5qT4ej7JrwoCJmHOz5bsOzlhdvw3P66vZzPPoaJ-xu-d-bc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Raw+Image+Reconstruction-Aware+Deep+Image+Compressors&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Punnappurath%2C+Abhijith&rft.au=Brown%2C+Michael+S&rft.date=2020-04-01&rft.eissn=1939-3539&rft.volume=42&rft.issue=4&rft.spage=1013&rft_id=info:doi/10.1109%2FTPAMI.2019.2903062&rft_id=info%3Apmid%2F30843804&rft.externalDocID=30843804 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |