Learning Raw Image Reconstruction-Aware Deep Image Compressors
Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image fidelity errors in the nonlinear standard RGB (sRGB) color space....
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 42; číslo 4; s. 1013 - 1019 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image fidelity errors in the nonlinear standard RGB (sRGB) color space. However, for many computer vision tasks, the sensor's linear raw-RGB image is desirable. Recent work has shown that the original raw-RGB image can be reconstructed using only small amounts of metadata embedded inside the JPEG image [1]. However, [1] relied on the conventional JPEG encoding that is unaware of the raw-RGB reconstruction task. In this paper, we examine the ability of deep image compressors to be "aware" of the additional objective of raw reconstruction. Towards this goal, we describe a general framework that enables deep networks targeting image compression to jointly consider both image fidelity errors and raw reconstruction errors. We describe this approach in two scenarios: (1) the network is trained from scratch using our proposed joint loss, and (2) a network originally trained only for sRGB fidelity loss is later fine-tuned to incorporate our raw reconstruction loss. When compared to sRGB fidelity-only compression, our combined loss leads to appreciable improvements in PSNR of the raw reconstruction with only minor impact on sRGB fidelity as measured by MS-SSIM. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-8828 1939-3539 2160-9292 1939-3539 |
| DOI: | 10.1109/TPAMI.2019.2903062 |