Adaptive Neural Control of Pure-Feedback Nonlinear Systems With Event-Triggered Communications

This paper is concerned with the adaptive event-triggered control problem for a class of pure-feedback nonlinear systems. Unlike the existing results where the control execution is periodic, the new proposed scheme updates the controller and the neural network weights only when desired control speci...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 29; číslo 12; s. 6242 - 6251
Hlavní autori: Li, Yuan-Xin, Yang, Guang-Hong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper is concerned with the adaptive event-triggered control problem for a class of pure-feedback nonlinear systems. Unlike the existing results where the control execution is periodic, the new proposed scheme updates the controller and the neural network weights only when desired control specifications cannot be guaranteed. Clearly, this can largely reduce the amount of transmission data. Besides, since the event-trigger error is discontinuous because of the event-triggering mechanism, the stability analysis in the classical sense may not be guaranteed. To solve this problem, we formulate the event-triggered network control systems as a nonlinear impulsive dynamical system, and a novel Lyapunov theorem is used to show the stability properties of the closed-loop systems. Finally, two simulation examples are given to illustrate the effectiveness of the theoretical results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2018.2828140