Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO3/SrTiO3 interface
The interface between two non-magnetic band insulators, LaAlO 3 and SrTiO 3 , can exhibit conductivity, superconductivity and magnetism. These interfacial phenomena can be reconciled by a theory that predicts a spiral magnetic ground state. The electronic properties of the polar interface between in...
Uloženo v:
| Vydáno v: | Nature physics Ročník 9; číslo 10; s. 626 - 630 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.10.2013
Nature Publishing Group |
| Témata: | |
| ISSN: | 1745-2473, 1745-2481 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The interface between two non-magnetic band insulators, LaAlO
3
and SrTiO
3
, can exhibit conductivity, superconductivity and magnetism. These interfacial phenomena can be reconciled by a theory that predicts a spiral magnetic ground state.
The electronic properties of the polar interface between insulating oxides is a subject of great interest
1
,
2
,
3
. An exciting development is the observation of robust magnetism
4
,
5
,
6
,
7
,
8
at the interface of two non-magnetic materials, LaAlO
3
(LAO) and SrTiO
3
(STO). Here we present a microscopic theory for the formation and interaction of local moments that depends on essential features of the LAO/STO interface. We show that correlation-induced moments arise owing to interfacial splitting of orbital degeneracy. We find that conduction electrons with a gate-tunable Rashba spin–orbit coupling mediate ferromagnetic exchange with a twist. We predict that the zero-field ground state is a long-wavelength spiral. Its evolution in an external field accounts semi-quantitatively for torque magnetometry data
5
and describes qualitative aspects of the scanning superconducting quantum interference device measurements
6
. We make several testable predictions for future experiments. |
|---|---|
| AbstractList | The interface between two non-magnetic band insulators, LaAlO3 and SrTiO3, can exhibit conductivity, superconductivity and magnetism. These interfacial phenomena can be reconciled by a theory that predicts a spiral magnetic ground state.The electronic properties of the polar interface between insulating oxides is a subject of great interest1,2,3. An exciting development is the observation of robust magnetism4,5,6,7,8 at the interface of two non-magnetic materials, LaAlO3 (LAO) and SrTiO3 (STO). Here we present a microscopic theory for the formation and interaction of local moments that depends on essential features of the LAO/STO interface. We show that correlation-induced moments arise owing to interfacial splitting of orbital degeneracy. We find that conduction electrons with a gate-tunable Rashba spin–orbit coupling mediate ferromagnetic exchange with a twist. We predict that the zero-field ground state is a long-wavelength spiral. Its evolution in an external field accounts semi-quantitatively for torque magnetometry data5 and describes qualitative aspects of the scanning superconducting quantum interference device measurements6. We make several testable predictions for future experiments. The interface between two non-magnetic band insulators, LaAlO 3 and SrTiO 3 , can exhibit conductivity, superconductivity and magnetism. These interfacial phenomena can be reconciled by a theory that predicts a spiral magnetic ground state. The electronic properties of the polar interface between insulating oxides is a subject of great interest 1 , 2 , 3 . An exciting development is the observation of robust magnetism 4 , 5 , 6 , 7 , 8 at the interface of two non-magnetic materials, LaAlO 3 (LAO) and SrTiO 3 (STO). Here we present a microscopic theory for the formation and interaction of local moments that depends on essential features of the LAO/STO interface. We show that correlation-induced moments arise owing to interfacial splitting of orbital degeneracy. We find that conduction electrons with a gate-tunable Rashba spin–orbit coupling mediate ferromagnetic exchange with a twist. We predict that the zero-field ground state is a long-wavelength spiral. Its evolution in an external field accounts semi-quantitatively for torque magnetometry data 5 and describes qualitative aspects of the scanning superconducting quantum interference device measurements 6 . We make several testable predictions for future experiments. The electronic properties of the polar interface between insulating oxides is a subject of great interest. An exciting development is the observation of robust magnetism at the interface of two non-magnetic materials, LaAlO3 (LAO) and SrTiO3 (STO). Here we present a microscopic theory for the formation and interaction of local moments that depends on essential features of the LAO/STO interface. We show that correlation-induced moments arise owing to interfacial splitting of orbital degeneracy. We find that conduction electrons with a gate-tunable Rashba spin-orbit coupling mediate ferromagnetic exchange with a twist. We predict that the zero-field ground state is a long-wavelength spiral. Its evolution in an external field accounts semi-quantitatively for torque magnetometry data and describes qualitative aspects of the scanning superconducting quantum interference device measurements. We make several testable predictions for future experiments. |
| Author | Randeria, Mohit Erten, Onur Banerjee, Sumilan |
| Author_xml | – sequence: 1 givenname: Sumilan surname: Banerjee fullname: Banerjee, Sumilan organization: Department of Physics, The Ohio State University – sequence: 2 givenname: Onur surname: Erten fullname: Erten, Onur organization: Department of Physics, The Ohio State University – sequence: 3 givenname: Mohit surname: Randeria fullname: Randeria, Mohit email: randeria@mps.ohio-state.edu organization: Department of Physics, The Ohio State University |
| BookMark | eNp9kMFKAzEURYNUsK0u_IOAK8WxySQzySxLsSoUurCuhzTzpk2ZZsYkBbvzH_xDv8QpLUVUXL0H79z7LreHOra2gNAlJXeUMDmwzXLrY0HiE9SlgidRzCXtHHfBzlDP-xUhPE4p6yI1BufqtVpYCEZjeNNLZRdwi31j7Of7R-3mJmBdb5rK2AVWtthdnKrwQePXWAUcloAnalhN2eDZzcyUYWMDuFJpOEenpao8XBxmH72M72ejx2gyfXgaDSeRZgkNUSoyIEpySHiZJUQmXDGqEwYCslRnmmUsKQuQWaGLeUmg0HMSp0UpipQqGXPWR1d738bVrxvwIV_VG2fblzmjUmaCUS7_oyhnkiQ0EzuvwZ7SrvbeQZlrE1QwtQ1OmSqnJN-1nR_bbhXXPxSNM2vltn-yN3vWt0xbtvuW4Rf8Bc_ukl4 |
| CitedBy_id | crossref_primary_10_1038_srep29126 crossref_primary_10_1002_adma_202004469 crossref_primary_10_1038_srep36859 crossref_primary_10_1088_1361_6633_aa892d crossref_primary_10_1039_C4CC08485C crossref_primary_10_1007_s11664_018_6788_2 crossref_primary_10_1063_5_0011526 crossref_primary_10_1103_PhysRevLett_124_027203 crossref_primary_10_1002_admi_201800352 crossref_primary_10_1016_j_physleta_2018_06_035 crossref_primary_10_1038_ncomms7005 crossref_primary_10_1038_s41598_021_88556_2 crossref_primary_10_1002_admi_201600547 crossref_primary_10_1063_1_4901940 crossref_primary_10_1088_1742_6596_592_1_012126 crossref_primary_10_1038_ncomms6118 crossref_primary_10_1103_PhysRevB_108_094441 crossref_primary_10_1038_s41467_024_51615_z crossref_primary_10_1016_j_scib_2020_09_024 crossref_primary_10_1038_nmat4491 crossref_primary_10_1007_s11128_017_1611_1 crossref_primary_10_1007_s10948_016_3675_z crossref_primary_10_1088_1361_648X_abcd7e crossref_primary_10_1038_nphys3049 crossref_primary_10_1146_annurev_matsci_070813_113437 crossref_primary_10_1088_0953_8984_27_12_125007 crossref_primary_10_1088_1367_2630_16_10_103012 crossref_primary_10_1038_srep25455 crossref_primary_10_1038_nmat4107 crossref_primary_10_1063_1_4921924 crossref_primary_10_1088_1361_6633_aad6ab crossref_primary_10_1103_PhysRevB_106_174437 crossref_primary_10_1103_PhysRevX_5_021032 crossref_primary_10_1088_1361_648X_ab000a crossref_primary_10_1038_s41598_017_18746_4 crossref_primary_10_1016_j_jmmm_2023_170819 crossref_primary_10_1038_s41598_017_18583_5 crossref_primary_10_1103_PhysRevB_103_L140406 crossref_primary_10_1209_0295_5075_108_60001 crossref_primary_10_1103_PhysRevB_108_224427 crossref_primary_10_1038_s41467_024_48946_2 crossref_primary_10_1002_admi_201900772 crossref_primary_10_1103_PhysRevB_106_104423 crossref_primary_10_1088_0953_8984_26_2_025705 crossref_primary_10_1038_s41467_019_10961_z crossref_primary_10_1103_PhysRevX_4_031045 crossref_primary_10_1002_advs_202105652 crossref_primary_10_1038_s41467_020_17377_0 crossref_primary_10_1016_j_ssc_2023_115154 crossref_primary_10_1038_ncomms6019 crossref_primary_10_1088_1674_1056_24_5_056701 crossref_primary_10_5802_crphys_190 crossref_primary_10_1016_j_jallcom_2021_160064 crossref_primary_10_1002_adma_201805970 crossref_primary_10_1063_1_4831976 crossref_primary_10_1073_pnas_1221453110 crossref_primary_10_1073_pnas_1811873115 crossref_primary_10_1155_2016_1671390 crossref_primary_10_1088_1361_648X_ab1831 crossref_primary_10_1088_1361_648X_aa833f crossref_primary_10_1038_s41565_019_0421_2 crossref_primary_10_1063_5_0209922 crossref_primary_10_1016_j_jmmm_2016_10_021 crossref_primary_10_1016_j_physc_2015_02_028 crossref_primary_10_1038_ncomms10386 crossref_primary_10_1039_D4MH01192A crossref_primary_10_1039_C8RA08564A crossref_primary_10_1016_j_mtcomm_2020_101339 crossref_primary_10_1039_C8RA05737K crossref_primary_10_1007_s11467_020_1000_6 crossref_primary_10_1002_admi_201600830 crossref_primary_10_1038_nphys2737 crossref_primary_10_1038_s41567_018_0363_x crossref_primary_10_1209_0295_5075_107_40003 crossref_primary_10_1007_s44214_023_00040_2 crossref_primary_10_1088_1361_648X_aca19a crossref_primary_10_1146_annurev_matsci_070813_113447 |
| Cites_doi | 10.1103/PhysRevLett.102.176805 10.1126/science.1131091 10.1146/annurev-conmatphys-062910-140445 10.1103/PhysRevLett.107.056802 10.1038/nphys2080 10.1103/PhysRevB.82.241405 10.1038/ncomms1192 10.1038/nature09720 10.1103/PhysRevLett.105.206401 10.1038/nphys2079 10.1103/PhysRevLett.104.126803 10.1038/nphys1106 10.1038/nmat1931 10.1103/PhysRevB.78.205106 10.1103/PhysRevLett.102.166804 10.1103/PhysRevB.86.201105 10.1103/PhysRevLett.110.206401 10.1103/PhysRevLett.106.166807 10.1103/PhysRevB.83.195114 10.1103/PhysRevLett.101.256801 10.1143/JPSJ.81.084708 10.1103/PhysRevB.70.035114 10.1103/PhysRevB.84.075423 10.1038/ncomms2116 10.1209/epl/i2004-10134-5 10.1103/PhysRevB.74.035112 10.1103/PhysRevLett.108.117003 10.1038/nature02308 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2013 Copyright Nature Publishing Group Oct 2013 |
| Copyright_xml | – notice: Springer Nature Limited 2013 – notice: Copyright Nature Publishing Group Oct 2013 |
| DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U PRINS |
| DOI | 10.1038/nphys2702 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic ProQuest Central China |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) ProQuest Central China |
| DatabaseTitleList | ProQuest Central Student ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1745-2481 |
| EndPage | 630 |
| ExternalDocumentID | 3086349481 10_1038_nphys2702 |
| GroupedDBID | 0R~ 123 29M 39C 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFKRA AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NFIDA NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PHGZT PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACSTC AFFHD ATHPR CITATION PHGZM PQGLB 3V. 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQUKI Q9U PRINS |
| ID | FETCH-LOGICAL-c351t-679e0a84e54f950854a31c53e7e96c9c3935fde89dcdbf0edcb026df7d61a8243 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325205000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1745-2473 |
| IngestDate | Sat Aug 23 14:27:59 EDT 2025 Sat Aug 23 13:59:37 EDT 2025 Sat Nov 29 08:01:38 EST 2025 Tue Nov 18 19:49:02 EST 2025 Sat Apr 12 01:21:54 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-679e0a84e54f950854a31c53e7e96c9c3935fde89dcdbf0edcb026df7d61a8243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 |
| OpenAccessLink | https://www.nature.com/articles/nphys2702.pdf |
| PQID | 1438051974 |
| PQPubID | 27545 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_3188973148 proquest_journals_1438051974 crossref_citationtrail_10_1038_nphys2702 crossref_primary_10_1038_nphys2702 springer_journals_10_1038_nphys2702 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-10-01 |
| PublicationDateYYYYMMDD | 2013-10-01 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature physics |
| PublicationTitleAbbrev | Nature Phys |
| PublicationYear | 2013 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | M Hirayama (BFnphys2702_CR19) 2012; 81 R Pentcheva (BFnphys2702_CR23) 2008; 78 AD Caviglia (BFnphys2702_CR12) 2010; 104 Ariando (BFnphys2702_CR7) 2011; 2 P Delugas (BFnphys2702_CR14) 2011; 106 M Sing (BFnphys2702_CR16) 2009; 102 A Ohtomo (BFnphys2702_CR1) 2004; 427 DA Dikin (BFnphys2702_CR8) 2011; 107 M Salluzzo (BFnphys2702_CR15) 2009; 102 BFnphys2702_CR30 A Brinkman (BFnphys2702_CR4) 2007; 6 S Florens (BFnphys2702_CR22) 2004; 70 BRK Nanda (BFnphys2702_CR29) 2011; 83 S Thiel (BFnphys2702_CR2) 2006; 313 Z Nussinov (BFnphys2702_CR25) 2004; 67 A Camjayi (BFnphys2702_CR28) 2008; 4 J Bert (BFnphys2702_CR6) 2011; 7 MB Shalom (BFnphys2702_CR9) 2010; 105 G Chen (BFnphys2702_CR26) 2013; 110 G Berner (BFnphys2702_CR17) 2010; 82 L Li (BFnphys2702_CR5) 2011; 7 A Fête (BFnphys2702_CR21) 2012; 86 S Lerer (BFnphys2702_CR10) 2011; 84 M Imada (BFnphys2702_CR24) 1998; 70 P Zubko (BFnphys2702_CR3) 2011; 2 A Joshua (BFnphys2702_CR11) 2012; 3 R Pentcheva (BFnphys2702_CR13) 2006; 74 K Michaeli (BFnphys2702_CR27) 2012; 108 AF Santander-Syro (BFnphys2702_CR20) 2011; 469 ZS Popovic (BFnphys2702_CR18) 2008; 101 |
| References_xml | – volume: 102 start-page: 176805 year: 2009 ident: BFnphys2702_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.176805 – volume: 313 start-page: 1942 year: 2006 ident: BFnphys2702_CR2 publication-title: Science doi: 10.1126/science.1131091 – volume: 2 start-page: 141 year: 2011 ident: BFnphys2702_CR3 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-062910-140445 – volume: 107 start-page: 56802 year: 2011 ident: BFnphys2702_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.056802 – volume: 7 start-page: 762 year: 2011 ident: BFnphys2702_CR5 publication-title: Nature Phys. doi: 10.1038/nphys2080 – volume: 82 start-page: 241405 year: 2010 ident: BFnphys2702_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.241405 – volume: 2 start-page: 188 year: 2011 ident: BFnphys2702_CR7 publication-title: Nature Commun. doi: 10.1038/ncomms1192 – volume: 469 start-page: 189 year: 2011 ident: BFnphys2702_CR20 publication-title: Nature doi: 10.1038/nature09720 – volume: 105 start-page: 206401 year: 2010 ident: BFnphys2702_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.206401 – volume: 7 start-page: 767 year: 2011 ident: BFnphys2702_CR6 publication-title: Nature Phys. doi: 10.1038/nphys2079 – volume: 104 start-page: 126803 year: 2010 ident: BFnphys2702_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.126803 – volume: 70 start-page: 1039 year: 1998 ident: BFnphys2702_CR24 publication-title: Rev. Mod. Phys. – volume: 4 start-page: 932 year: 2008 ident: BFnphys2702_CR28 publication-title: Nature Phys. doi: 10.1038/nphys1106 – volume: 6 start-page: 493 year: 2007 ident: BFnphys2702_CR4 publication-title: Nature Mater. doi: 10.1038/nmat1931 – volume: 78 start-page: 205106 year: 2008 ident: BFnphys2702_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.205106 – volume: 102 start-page: 166804 year: 2009 ident: BFnphys2702_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.166804 – volume: 86 start-page: 201105 year: 2012 ident: BFnphys2702_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.201105 – volume: 110 start-page: 206401 year: 2013 ident: BFnphys2702_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.206401 – volume: 106 start-page: 166807 year: 2011 ident: BFnphys2702_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.166807 – volume: 83 start-page: 195114 year: 2011 ident: BFnphys2702_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195114 – volume: 101 start-page: 256801 year: 2008 ident: BFnphys2702_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.256801 – volume: 81 start-page: 084708 year: 2012 ident: BFnphys2702_CR19 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.81.084708 – volume: 70 start-page: 035114 year: 2004 ident: BFnphys2702_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.035114 – ident: BFnphys2702_CR30 – volume: 84 start-page: 075423 year: 2011 ident: BFnphys2702_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075423 – volume: 3 start-page: 1129 year: 2012 ident: BFnphys2702_CR11 publication-title: Nature Commun. doi: 10.1038/ncomms2116 – volume: 67 start-page: 990 year: 2004 ident: BFnphys2702_CR25 publication-title: Eur. Phys. Lett. doi: 10.1209/epl/i2004-10134-5 – volume: 74 start-page: 035112 year: 2006 ident: BFnphys2702_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.035112 – volume: 108 start-page: 117003 year: 2012 ident: BFnphys2702_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.117003 – volume: 427 start-page: 423 year: 2004 ident: BFnphys2702_CR1 publication-title: Nature doi: 10.1038/nature02308 |
| SSID | ssj0042613 |
| Score | 2.494832 |
| Snippet | The interface between two non-magnetic band insulators, LaAlO
3
and SrTiO
3
, can exhibit conductivity, superconductivity and magnetism. These interfacial... The electronic properties of the polar interface between insulating oxides is a subject of great interest. An exciting development is the observation of robust... The interface between two non-magnetic band insulators, LaAlO3 and SrTiO3, can exhibit conductivity, superconductivity and magnetism. These interfacial... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 626 |
| SubjectTerms | 639/301/119/995 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Conduction electrons Electron spin Electronic properties Electrons Ferromagnetism Ground state Insulators letter Magnetic materials Magnetic measurement Magnetic properties Magnetism Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Spin-orbit interactions Strontium titanates Superconducting quantum interference devices Superconductivity Theoretical |
| Title | Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO3/SrTiO3 interface |
| URI | https://link.springer.com/article/10.1038/nphys2702 https://www.proquest.com/docview/1438051974 https://www.proquest.com/docview/3188973148 |
| Volume | 9 |
| WOSCitedRecordID | wos000325205000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: P5Z dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: PCBAR dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: BENPR dateStart: 20051001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: M2P dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiQufQAVW9rKohw4YG0TO2v7VBXUVQ-wXbVFqrhEjj2pVtomS7JFHPkP_EN-CZ5s0pcqLlxyie1Emcn487w-gHdaeZ1hlnOHNuMyUoJb4x03KB2aWKPyviGbUKORvrgw49bhVrdplZ1NbAy1Lx35yPtB9zTRLEl9MPvOiTWKoqsthcYTWAnIJqKUri_xuLPEdDoQi4LIhMdSia6zkND9ghwHVIt1fz-6BZkP4qLNdjNc-98XXYfVFmiyw4VmbMASFi_gWZPw6eqXYIdYVeWVvSyoipHhz0UF8AdWzybFn1-_yyqbzJkrr6li95LZwrMmJj9l7Zz6itk5C_CRfbaH0xPRP6vOJyeCUf-JKrcOX8HX4dH5p2Pe0i1wJ5JozgfK4L7VEhOZEzdsIq2IXCJQoRk446iIN_eogyh9lu-jd1k4wPlc-UFkdSzFJiwXZYGvgWnM40wnYV0VS2fQBisWuThHgmfWuB687z566tpe5ESJMU2bmLjQ6Y18evD2Zuhs0YDjsUHbnSzS9h-sUyJ2J4Cq5KO3b-XUg71O2HdmP3zG1r8XeQPPY2LKaPL8tmF5Xl3jDjx1P4JAql1Y-Xg0Gp_uNvoZruPk2186ZvKd |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb8RCAYuHxIFoG9tZOweEKmDVqsu2EovUW-rYk2qlbbIk29eN_8D_4EfxS_Dk0UJVceuBc2znMV_GY3u--QBeaeV0imkWWDRpIEMlAhM7G8QoLcZco3KuFptQ47He2Ym3l-Bnx4WhtMrOJ9aO2hWW9sj7HnuaZJakfj__FpBqFJ2udhIaDSw28eTIL9mqdxsfvX1fcz78NPmwHrSqAoEVUbgIBirGVaMlRjIjCdRIGhHaSKDCeGBjS1zVzKH2T-zSbBWdTf06xWXKDUKjuRR-3CtwVVJlMUoV5Nud56fViGgImFHApRJdJSOh-zltVBD36-_57yyoPXcOW09vw9v_24e5A7faQJqtNci_C0uY34PrdUKrre6DGWJZFvtmLyeWJsPjhuH8llXzaf7r-4-iTKcLZosDYiTvMZM7VucczFjbp9pnZsF8eMxGZm22Jfpfysl0SzCqr1FmxuID-Hop7_cQlvMix0fANGY81ZEfV3FpYzTeS4eWZ0jhp4ltD950Rk5sW2udJD9mSX3mL3RyiocevDhtOm8KjFzUaKWzfdL6mCoh4XoKwJW88PIZLnrwsgPXH73P3-Pxvwd5DjfWJ59HyWhjvPkEbnJSBalzGldgeVEe4FO4Zg-9ccpn9T_BYPeysfYbi-pOGg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFhAXylNdKGDxkDgQbWM7a-eAUEVZUbXarkSRKi6pY0-qlbbJNtlCe-M_8G_4OfwSPHm0UFXceuAcx3n483jGnm8-gJdaOZ1imgUWTRrIUInAxM4GMUqLMdeonKvFJtRopPf24vEC_Oy4MJRW2dnE2lC7wtIeed9jT5PMktT9rE2LGG8M382OAlKQopPWTk6jgcgWnn7z4Vv1dnPDj_Urzocfdt9_DFqFgcCKKJwHAxXjmtESI5mRHGokjQhtJFBhPLCxJd5q5lD7t3dptobOpj5mcZlyg9BoLoXv9xosKR9jUjrhOPrSrQIUmYiGjBkFXCrRVTUSup_TpgXxwP5eC88d3AtnsvVSN1z-n3_SHbjdOthsvZkRd2EB83two050tdV9MEMsy-LQHOTE3mR40jCf37BqNsl_ff9RlOlkzmxxTEzlA2Zyx-pchClr76kOmZkz7zazbbM-3RH9T-XuZEcwqrtRZsbiA_h8Jd_3EBbzIscVYBoznurI96u4tDEab71DyzMkt9TEtgevuwFPbFuDnaRApkmdCyB0coaNHjw_azprCo9c1mi1w0HS2p4qIUF7csyVvPTyOUZ68KID2h93X3zGo3938gxueogl25ujrcdwi5NYSJ3quAqL8_IYn8B1-9WPTfm0nh4M9q8aar8BHmhXBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferromagnetic+exchange%2C+spin%E2%80%93orbit+coupling+and+spiral+magnetism+at+the+LaAlO3%2FSrTiO3+interface&rft.jtitle=Nature+physics&rft.au=Banerjee%2C+Sumilan&rft.au=Erten%2C+Onur&rft.au=Randeria%2C+Mohit&rft.date=2013-10-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=9&rft.issue=10&rft.spage=626&rft.epage=630&rft_id=info:doi/10.1038%2Fnphys2702&rft.externalDocID=10_1038_nphys2702 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |