Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO3/SrTiO3 interface

The interface between two non-magnetic band insulators, LaAlO 3 and SrTiO 3 , can exhibit conductivity, superconductivity and magnetism. These interfacial phenomena can be reconciled by a theory that predicts a spiral magnetic ground state. The electronic properties of the polar interface between in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature physics Ročník 9; číslo 10; s. 626 - 630
Hlavní autoři: Banerjee, Sumilan, Erten, Onur, Randeria, Mohit
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.10.2013
Nature Publishing Group
Témata:
ISSN:1745-2473, 1745-2481
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The interface between two non-magnetic band insulators, LaAlO 3 and SrTiO 3 , can exhibit conductivity, superconductivity and magnetism. These interfacial phenomena can be reconciled by a theory that predicts a spiral magnetic ground state. The electronic properties of the polar interface between insulating oxides is a subject of great interest 1 , 2 , 3 . An exciting development is the observation of robust magnetism 4 , 5 , 6 , 7 , 8 at the interface of two non-magnetic materials, LaAlO 3 (LAO) and SrTiO 3 (STO). Here we present a microscopic theory for the formation and interaction of local moments that depends on essential features of the LAO/STO interface. We show that correlation-induced moments arise owing to interfacial splitting of orbital degeneracy. We find that conduction electrons with a gate-tunable Rashba spin–orbit coupling mediate ferromagnetic exchange with a twist. We predict that the zero-field ground state is a long-wavelength spiral. Its evolution in an external field accounts semi-quantitatively for torque magnetometry data 5 and describes qualitative aspects of the scanning superconducting quantum interference device measurements 6 . We make several testable predictions for future experiments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys2702