Distributed Stochastic Proximal Algorithm With Random Reshuffling for Nonsmooth Finite-Sum Optimization
The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differ...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 35; číslo 3; s. 1 - 15 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an <inline-formula> <tex-math notation="LaTeX">\mathcal{O}(({1}/{T})+({1}/{\sqrt{T}}))</tex-math> </inline-formula> convergence rate, where <inline-formula> <tex-math notation="LaTeX">T</tex-math> </inline-formula> is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2022.3201711 |