Confluence of algebraic rewriting systems

Convergent rewriting systems on algebraic structures give methods to solve decision problems, to prove coherence results, and to compute homological invariants. These methods are based on higher-dimensional extensions of the critical branching lemma that proves local confluence from confluence of th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical structures in computer science Ročník 32; číslo 7; s. 870 - 897
Hlavní autori: Chenavier, Cyrille, Dupont, Benjamin, Malbos, Philippe
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.08.2022
Cambridge University Press (CUP)
Predmet:
ISSN:0960-1295, 1469-8072
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Convergent rewriting systems on algebraic structures give methods to solve decision problems, to prove coherence results, and to compute homological invariants. These methods are based on higher-dimensional extensions of the critical branching lemma that proves local confluence from confluence of the critical branchings. The analysis of local confluence of rewriting systems on algebraic structures, such as groups or linear algebras, is complicated because of the underlying algebraic axioms. This article introduces the structure of algebraic polygraph modulo that formalizes the interaction between the rules of an algebraic rewriting system and the inherent algebraic axioms, and we show a critical branching lemma for algebraic polygraphs. We deduce a critical branching lemma for rewriting systems on algebraic models whose axioms are specified by convergent modulo rewriting systems. We illustrate our constructions for string, linear, and group rewriting systems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0960-1295
1469-8072
DOI:10.1017/S0960129521000426