Electromagnetic Source Imaging via a Data-Synthesis-Based Convolutional Encoder-Decoder Network

Electromagnetic source imaging (ESI) requires solving a highly ill-posed inverse problem. To seek a unique solution, traditional ESI methods impose various forms of priors that may not accurately reflect the actual source properties, which may hinder their broad applications. To overcome this limita...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 35; no. 5; pp. 6423 - 6437
Main Authors: Huang, Gexin, Liu, Ke, Liang, Jiawen, Cai, Chang, Gu, Zheng Hui, Qi, Feifei, Li, Yuanqing, Yu, Zhu Liang, Wu, Wei
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electromagnetic source imaging (ESI) requires solving a highly ill-posed inverse problem. To seek a unique solution, traditional ESI methods impose various forms of priors that may not accurately reflect the actual source properties, which may hinder their broad applications. To overcome this limitation, in this article, a novel data-synthesized spatiotemporally convolutional encoder-decoder network (DST-CedNet) method is proposed for ESI. The DST-CedNet recasts ESI as a machine learning problem, where discriminative learning and latent-space representations are integrated in a CedNet to learn a robust mapping from the measured electroencephalography/magnetoencephalography (E/MEG) signals to the brain activity. In particular, by incorporating prior knowledge regarding dynamical brain activities, a novel data synthesis strategy is devised to generate large-scale samples for effectively training CedNet. This stands in contrast to traditional ESI methods where the prior information is often enforced via constraints primarily aimed for mathematical convenience. Extensive numerical experiments as well as analysis of a real MEG and epilepsy EEG dataset demonstrate that the DST-CedNet outperforms several state-of-the-art ESI methods in robustly estimating source signals under a variety of source configurations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3209925