SimpleMKKM: Simple Multiple Kernel K-Means
We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the k...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 4; pp. 5174 - 5186 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global optimum . We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are available at https://github.com/xinwangliu/SimpleMKKMcodes/ . |
|---|---|
| AbstractList | We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global optimum. We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are available at https://github.com/xinwangliu/SimpleMKKMcodes/. We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global optimum. We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are available at https://github.com/xinwangliu/SimpleMKKMcodes/.We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global optimum. We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are available at https://github.com/xinwangliu/SimpleMKKMcodes/. |
| Author | Liu, Xinwang |
| Author_xml | – sequence: 1 givenname: Xinwang orcidid: 0000-0001-9066-1475 surname: Liu fullname: Liu, Xinwang email: xinwangliu@nudt.edu.cn organization: College of Computer, National University of Defense Technology, Changsha, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35969570$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1LwzAYgINM3If-AQUZeBGhMx9Nmngbw4_RFQXnOaTJW-jo2tm0B_-9nd08ePCU9_A8L2-eMRqUVQkIXRI8IwSr-_XbPFnOKKZ0xoiSgskTNKJE4EBRRQdohImggZRUDtHY-w3GJOSYnaEh40ooHuERunvPt7sCkjhOHqb9PE3aosn3Qwx1CcU0DhIwpT9Hp5kpPFwc3gn6eHpcL16C1evzcjFfBZZx0gQhV1GWGkqotFmaEjAZIYSBZUAizqxwHKwLhcHKKWqZsC5zkQsdNyrkzrEJuu337urqswXf6G3uLRSFKaFqvaYRpqHsfqI69OYPuqnauuyu66gO4WFEcUddH6g23YLTuzrfmvpLHyt0gOwBW1fe15BpmzemyauyqU1eaIL1Prj-Ca73wfUheKfSP-px-7_SVS_lAPArKMkjIUL2DRI0iR8 |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0326145 crossref_primary_10_1109_TIP_2025_3593057 crossref_primary_10_1109_TCSVT_2024_3434577 crossref_primary_10_1109_TMM_2024_3397038 crossref_primary_10_1109_TNNLS_2023_3267184 crossref_primary_10_1109_TFUZZ_2023_3277692 crossref_primary_10_1109_TNNLS_2024_3439545 crossref_primary_10_1016_j_engappai_2024_109438 crossref_primary_10_1109_TKDE_2024_3425393 crossref_primary_10_1109_LSP_2024_3449229 crossref_primary_10_1109_TCSVT_2024_3393148 crossref_primary_10_1109_TKDE_2024_3399738 crossref_primary_10_1109_JIOT_2025_3532668 crossref_primary_10_1109_TETCI_2024_3425329 crossref_primary_10_1177_14727978251321959 crossref_primary_10_1016_j_engappai_2024_109489 crossref_primary_10_1016_j_sigpro_2025_110074 crossref_primary_10_1109_LSP_2025_3547665 crossref_primary_10_1016_j_patcog_2024_110300 crossref_primary_10_1109_TPAMI_2025_3577171 crossref_primary_10_1016_j_apm_2025_116299 crossref_primary_10_1016_j_inffus_2024_102323 crossref_primary_10_1016_j_inffus_2024_102488 crossref_primary_10_1109_TNNLS_2024_3434968 crossref_primary_10_1109_TNNLS_2023_3306006 crossref_primary_10_1016_j_knosys_2024_112327 crossref_primary_10_1109_TKDE_2024_3372708 crossref_primary_10_1109_TKDE_2025_3543817 crossref_primary_10_1016_j_patcog_2025_111977 crossref_primary_10_1109_TNNLS_2024_3435058 crossref_primary_10_1109_TNNLS_2024_3439735 crossref_primary_10_1109_TPAMI_2025_3582689 crossref_primary_10_1007_s13042_024_02167_7 crossref_primary_10_1016_j_patcog_2024_110307 crossref_primary_10_1109_TNNLS_2023_3319823 crossref_primary_10_3390_a16040214 crossref_primary_10_3390_rs16214097 crossref_primary_10_1109_TNNLS_2025_3525766 crossref_primary_10_1109_TNNLS_2023_3276393 crossref_primary_10_1016_j_patcog_2025_112220 crossref_primary_10_1016_j_inffus_2023_102219 crossref_primary_10_1016_j_knosys_2025_113043 crossref_primary_10_1016_j_patcog_2025_112140 crossref_primary_10_1109_TPAMI_2025_3573613 crossref_primary_10_1109_TSMC_2024_3465039 crossref_primary_10_1109_TCSVT_2024_3430041 crossref_primary_10_3390_math11183950 crossref_primary_10_1016_j_future_2024_107525 crossref_primary_10_1016_j_eswa_2025_128007 crossref_primary_10_1109_TCSVT_2023_3312979 crossref_primary_10_1109_TNNLS_2022_3224058 crossref_primary_10_1109_TFUZZ_2024_3376328 crossref_primary_10_1145_3653305 crossref_primary_10_1016_j_jneumeth_2024_110136 crossref_primary_10_1109_TBDATA_2023_3325045 crossref_primary_10_3390_pr13030898 crossref_primary_10_1109_TPAMI_2024_3387433 crossref_primary_10_1142_S0218001425510103 crossref_primary_10_1016_j_knosys_2024_111770 crossref_primary_10_1109_TPAMI_2022_3224978 crossref_primary_10_1002_mp_17892 crossref_primary_10_1109_TNNLS_2023_3307158 crossref_primary_10_1016_j_ins_2023_119038 crossref_primary_10_1016_j_patcog_2025_111399 crossref_primary_10_1109_TIP_2025_3583122 crossref_primary_10_1109_TNNLS_2025_3527120 crossref_primary_10_1111_exsy_13720 crossref_primary_10_1109_TIP_2022_3141612 crossref_primary_10_1016_j_neunet_2024_106602 crossref_primary_10_1109_TNNLS_2025_3546660 crossref_primary_10_1016_j_neunet_2024_106529 crossref_primary_10_1002_sam_11621 crossref_primary_10_1109_TKDE_2024_3484161 crossref_primary_10_1109_TMM_2025_3535360 crossref_primary_10_1109_TPAMI_2024_3521022 crossref_primary_10_1109_TPAMI_2022_3233635 crossref_primary_10_1109_TKDE_2023_3340743 crossref_primary_10_1016_j_neucom_2024_128252 crossref_primary_10_1016_j_ymeth_2024_09_015 crossref_primary_10_1109_TNNLS_2024_3424464 crossref_primary_10_1109_TPAMI_2023_3337195 |
| Cites_doi | 10.1109/TPAMI.2019.2895608 10.1609/aaai.v30i1.10249 10.1023/A:1012450327387 10.7551/mitpress/1120.003.0052 10.1162/NECO_a_00872 10.1109/TPAMI.2020.3001433 10.1109/TPAMI.2018.2879108 10.1109/TPAMI.2018.2847335 10.1109/tpami.2019.2892416 10.1016/j.patcog.2014.05.005 10.1109/TFUZZ.2011.2170175 10.1109/TPAMI.2020.3011148 10.1137/S0036144596302644 10.1137/1.9781611972795.55 10.1109/TPAMI.2011.255 10.1109/tpami.2021.3116948 10.1109/ICCV48922.2021.00916 10.1609/aaai.v31i1.10895 10.24963/ijcai.2019/524 10.1109/TIT.2010.2069250 10.1109/TPAMI.2020.3037734 10.1109/TPAMI.2020.2974828 10.1609/aaai.v31i1.10893 10.1109/ICDM.2012.43 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2022.3198638 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 5186 |
| ExternalDocumentID | 35969570 10_1109_TPAMI_2022_3198638 9857664 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2020AAA0107100 – fundername: National Natural Science Foundation of China grantid: 61922088 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM PKN RIC RIG RNI RZB VH1 XJT Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-4597fba2128cfbb1eaf1113ec3e1753c6d5ecd46a09d92c36cdfd7d4d5a945dd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947840300076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Thu Oct 02 05:25:04 EDT 2025 Sun Nov 30 04:09:53 EST 2025 Wed Feb 19 02:23:55 EST 2025 Sat Nov 29 02:58:20 EST 2025 Tue Nov 18 22:41:42 EST 2025 Wed Aug 27 02:06:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-4597fba2128cfbb1eaf1113ec3e1753c6d5ecd46a09d92c36cdfd7d4d5a945dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9066-1475 |
| PMID | 35969570 |
| PQID | 2784554720 |
| PQPubID | 85458 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2702484509 proquest_journals_2784554720 crossref_citationtrail_10_1109_TPAMI_2022_3198638 crossref_primary_10_1109_TPAMI_2022_3198638 pubmed_primary_35969570 ieee_primary_9857664 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Gönen (ref6) ref34 ref15 Cortes (ref36) ref14 Kloft (ref22) 2011; 12 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Kumar (ref9) ref19 ref18 Rakotomamonjy (ref28) 2008; 9 Kloft (ref35) 2012; 13 Bang (ref16) 2018 Cortes (ref24) 2012; 13 Li (ref12) Kumar (ref8) ref26 ref25 ref20 ref21 Cortes (ref23) ref27 ref29 ref4 ref3 ref5 Peng (ref7) |
| References_xml | – ident: ref17 doi: 10.1109/TPAMI.2019.2895608 – start-page: 1704 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. ident: ref12 article-title: Multiple kernel clustering with local kernel alignment maximization – ident: ref13 doi: 10.1609/aaai.v30i1.10249 – ident: ref27 doi: 10.1023/A:1012450327387 – volume: 9 start-page: 2491 year: 2008 ident: ref28 article-title: SimpleMKL publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 795 year: 2012 ident: ref24 article-title: Algorithms for learning kernels based on centered alignment publication-title: J. Mach. Learn. Res. – ident: ref25 doi: 10.7551/mitpress/1120.003.0052 – volume: 13 start-page: 2465 year: 2012 ident: ref35 article-title: On the convergence rate of lp-norm multiple kernel learning publication-title: J. Mach. Learn. Res. – ident: ref30 doi: 10.1162/NECO_a_00872 – ident: ref4 doi: 10.1109/TPAMI.2020.3001433 – ident: ref18 doi: 10.1109/TPAMI.2018.2879108 – start-page: 109 volume-title: Proc. 25th Conf. Uncertainty Artif. Intell. ident: ref23 article-title: L2 regularization for learning kernels – start-page: 5092 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref7 article-title: COMIC: Multi-view clustering without parameter selection – ident: ref10 doi: 10.1109/TPAMI.2018.2847335 – ident: ref15 doi: 10.1109/tpami.2019.2892416 – ident: ref33 doi: 10.1016/j.patcog.2014.05.005 – start-page: 393 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref8 article-title: A co-training approach for multi-view spectral clustering – ident: ref5 doi: 10.1109/TFUZZ.2011.2170175 – ident: ref11 doi: 10.1109/TPAMI.2020.3011148 – year: 2018 ident: ref16 article-title: Robust multiple kernel k-means clustering using min-max optimization – ident: ref26 doi: 10.1137/S0036144596302644 – ident: ref1 doi: 10.1137/1.9781611972795.55 – ident: ref2 doi: 10.1109/TPAMI.2011.255 – ident: ref21 doi: 10.1109/tpami.2021.3116948 – ident: ref20 doi: 10.1109/ICCV48922.2021.00916 – ident: ref31 doi: 10.1609/aaai.v31i1.10895 – start-page: 2760 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref36 article-title: Learning kernels using local Rademacher complexity – ident: ref32 doi: 10.24963/ijcai.2019/524 – volume: 12 start-page: 953 year: 2011 ident: ref22 article-title: ${l}_{p}$lp-norm multiple kernel learning publication-title: J. Mach. Learn. Res. – ident: ref29 doi: 10.1109/TIT.2010.2069250 – start-page: 1305 volume-title: Proc. Int Conf. Neural Inf. Process. Syst. ident: ref6 article-title: Localized data fusion for kernel k-means clustering with application to cancer biology – ident: ref3 doi: 10.1109/TPAMI.2020.3037734 – ident: ref19 doi: 10.1109/TPAMI.2020.2974828 – start-page: 1413 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref9 article-title: Co-regularized multi-view spectral clustering – ident: ref14 doi: 10.1609/aaai.v31i1.10893 – ident: ref34 doi: 10.1109/ICDM.2012.43 |
| SSID | ssj0014503 |
| Score | 2.6832724 |
| Snippet | We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5174 |
| SubjectTerms | Ablation Algorithms Clustering Clustering algorithms Criteria Kernel kernel alignment maximization Kernels Linear programming Matrix partitioning Maximization Minimization Multi-view clustering multiple kernel clustering Optimization Partitioning algorithms Source code Task analysis |
| Title | SimpleMKKM: Simple Multiple Kernel K-Means |
| URI | https://ieeexplore.ieee.org/document/9857664 https://www.ncbi.nlm.nih.gov/pubmed/35969570 https://www.proquest.com/docview/2784554720 https://www.proquest.com/docview/2702484509 |
| Volume | 45 |
| WOSCitedRecordID | wos000947840300076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB6qiNQHj9YjHiWCT2o01yZZ30QsSogUVOhb2OzOQqGkUlt_v7ubgz6o4NtCdpMwBzOzc3wAF7EMkEsuHMEK19GpNaeghDk-FR6X6PMImQGbiF9ekvGYjjpw3fbCIKIpPsMbvTS5fDHjS31VdksT5R1H4RqsxXFU9Wq1GYOQGBRk5cEoDVdhRNMg49Lbt9F99qxCQd9XESpNlMR1YTMgNKJEYxSv2CMDsPK7r2lsznDnf3-7C9u1b2nfV8KwBx0se7DT4DbYtRr3YGtlCGEfLl8nekJwlqbZnV2t7awuM7RTnJc4tVMnQ2XT9uF9-Pj28OTUCAoOD4i3cEIVLsiCKfOUcFkUHjKpoeWRB6gndPJIEOQijJhLBfV5EHEhRSxCQRgNiRDBAayXsxKPwCaxdLmiFwpfHSgCJgOJhb5TLqQXi8QCr6Fjzuvx4hrlYpqbMMOluWFDrtmQ12yw4Ko981EN1_hzd18Tud1Z09eC04Zdea1_n7lOpypHKfZdC87bx0pzdDqElThb6j16npuSG2rBYcXm9t2NdBz__M0T6GrY-aqC5xTWF_MlnsEG_1pMPucDJZ7jZGDE8xtrXN3L |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB688HjwWo96VvBJrfZK2_gm4rJL7SK4gm8lTSYgSFfWXX-_SXqwDyr4FmjSljmYmczxAZzHMkAuuXAEK1xHp9acghLm-FR4XKLPI2QGbCIeDJLXV_o0B1dtLwwimuIzvNZLk8sXIz7VV2U3NFHecRTOwyIJQ9-turXanEFIDA6y8mGUjqtAommRcenN8Oku66tg0PdVjEoTJXOrsBwQGlGiUYpnLJKBWPnd2zRWp7vxv__dhPXau7TvKnHYgjkst2GjQW6wa0XehrWZMYQduHh-0zOCszTNbu1qbWd1oaGd4rjEdzt1MlRWbQdeug_D-55TYyg4PCDexAlVwCALpgxUwmVReMikBpdHHqCe0ckjQZCLMGIuFdTnQcSFFLEIBWE0JEIEu7BQjkrcB5vE0uWKXih8daAImAwkFvpWuZBeLBILvIaOOa8HjGuci_fcBBouzQ0bcs2GvGaDBZftmY9qvMafuzuayO3Omr4WHDXsymsN_Mx1QlW5SrHvWnDWPla6oxMirMTRVO_RE92U3FAL9io2t-9upOPg52-ewkpvmD3mj_1BegirGoS-quc5goXJeIrHsMS_Jm-f4xMjpN_lgOAq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SimpleMKKM%3A+Simple+Multiple+Kernel+K-Means&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Xinwang&rft.date=2023-04-01&rft.eissn=1939-3539&rft.volume=45&rft.issue=4&rft.spage=5174&rft_id=info:doi/10.1109%2FTPAMI.2022.3198638&rft_id=info%3Apmid%2F35969570&rft.externalDocID=35969570 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |