SimpleMKKM: Simple Multiple Kernel K-Means

We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the k...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 4; pp. 5174 - 5186
Main Author: Liu, Xinwang
Format: Journal Article
Language:English
Published: United States IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global optimum . We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are available at https://github.com/xinwangliu/SimpleMKKMcodes/ .
AbstractList We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global optimum. We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are available at https://github.com/xinwangliu/SimpleMKKMcodes/.
We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global optimum. We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are available at https://github.com/xinwangliu/SimpleMKKMcodes/.We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global optimum. We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are available at https://github.com/xinwangliu/SimpleMKKMcodes/.
Author Liu, Xinwang
Author_xml – sequence: 1
  givenname: Xinwang
  orcidid: 0000-0001-9066-1475
  surname: Liu
  fullname: Liu, Xinwang
  email: xinwangliu@nudt.edu.cn
  organization: College of Computer, National University of Defense Technology, Changsha, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35969570$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LwzAYgINM3If-AQUZeBGhMx9Nmngbw4_RFQXnOaTJW-jo2tm0B_-9nd08ePCU9_A8L2-eMRqUVQkIXRI8IwSr-_XbPFnOKKZ0xoiSgskTNKJE4EBRRQdohImggZRUDtHY-w3GJOSYnaEh40ooHuERunvPt7sCkjhOHqb9PE3aosn3Qwx1CcU0DhIwpT9Hp5kpPFwc3gn6eHpcL16C1evzcjFfBZZx0gQhV1GWGkqotFmaEjAZIYSBZUAizqxwHKwLhcHKKWqZsC5zkQsdNyrkzrEJuu337urqswXf6G3uLRSFKaFqvaYRpqHsfqI69OYPuqnauuyu66gO4WFEcUddH6g23YLTuzrfmvpLHyt0gOwBW1fe15BpmzemyauyqU1eaIL1Prj-Ca73wfUheKfSP-px-7_SVS_lAPArKMkjIUL2DRI0iR8
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1371_journal_pone_0326145
crossref_primary_10_1109_TIP_2025_3593057
crossref_primary_10_1109_TCSVT_2024_3434577
crossref_primary_10_1109_TMM_2024_3397038
crossref_primary_10_1109_TNNLS_2023_3267184
crossref_primary_10_1109_TFUZZ_2023_3277692
crossref_primary_10_1109_TNNLS_2024_3439545
crossref_primary_10_1016_j_engappai_2024_109438
crossref_primary_10_1109_TKDE_2024_3425393
crossref_primary_10_1109_LSP_2024_3449229
crossref_primary_10_1109_TCSVT_2024_3393148
crossref_primary_10_1109_TKDE_2024_3399738
crossref_primary_10_1109_JIOT_2025_3532668
crossref_primary_10_1109_TETCI_2024_3425329
crossref_primary_10_1177_14727978251321959
crossref_primary_10_1016_j_engappai_2024_109489
crossref_primary_10_1016_j_sigpro_2025_110074
crossref_primary_10_1109_LSP_2025_3547665
crossref_primary_10_1016_j_patcog_2024_110300
crossref_primary_10_1109_TPAMI_2025_3577171
crossref_primary_10_1016_j_apm_2025_116299
crossref_primary_10_1016_j_inffus_2024_102323
crossref_primary_10_1016_j_inffus_2024_102488
crossref_primary_10_1109_TNNLS_2024_3434968
crossref_primary_10_1109_TNNLS_2023_3306006
crossref_primary_10_1016_j_knosys_2024_112327
crossref_primary_10_1109_TKDE_2024_3372708
crossref_primary_10_1109_TKDE_2025_3543817
crossref_primary_10_1016_j_patcog_2025_111977
crossref_primary_10_1109_TNNLS_2024_3435058
crossref_primary_10_1109_TNNLS_2024_3439735
crossref_primary_10_1109_TPAMI_2025_3582689
crossref_primary_10_1007_s13042_024_02167_7
crossref_primary_10_1016_j_patcog_2024_110307
crossref_primary_10_1109_TNNLS_2023_3319823
crossref_primary_10_3390_a16040214
crossref_primary_10_3390_rs16214097
crossref_primary_10_1109_TNNLS_2025_3525766
crossref_primary_10_1109_TNNLS_2023_3276393
crossref_primary_10_1016_j_patcog_2025_112220
crossref_primary_10_1016_j_inffus_2023_102219
crossref_primary_10_1016_j_knosys_2025_113043
crossref_primary_10_1016_j_patcog_2025_112140
crossref_primary_10_1109_TPAMI_2025_3573613
crossref_primary_10_1109_TSMC_2024_3465039
crossref_primary_10_1109_TCSVT_2024_3430041
crossref_primary_10_3390_math11183950
crossref_primary_10_1016_j_future_2024_107525
crossref_primary_10_1016_j_eswa_2025_128007
crossref_primary_10_1109_TCSVT_2023_3312979
crossref_primary_10_1109_TNNLS_2022_3224058
crossref_primary_10_1109_TFUZZ_2024_3376328
crossref_primary_10_1145_3653305
crossref_primary_10_1016_j_jneumeth_2024_110136
crossref_primary_10_1109_TBDATA_2023_3325045
crossref_primary_10_3390_pr13030898
crossref_primary_10_1109_TPAMI_2024_3387433
crossref_primary_10_1142_S0218001425510103
crossref_primary_10_1016_j_knosys_2024_111770
crossref_primary_10_1109_TPAMI_2022_3224978
crossref_primary_10_1002_mp_17892
crossref_primary_10_1109_TNNLS_2023_3307158
crossref_primary_10_1016_j_ins_2023_119038
crossref_primary_10_1016_j_patcog_2025_111399
crossref_primary_10_1109_TIP_2025_3583122
crossref_primary_10_1109_TNNLS_2025_3527120
crossref_primary_10_1111_exsy_13720
crossref_primary_10_1109_TIP_2022_3141612
crossref_primary_10_1016_j_neunet_2024_106602
crossref_primary_10_1109_TNNLS_2025_3546660
crossref_primary_10_1016_j_neunet_2024_106529
crossref_primary_10_1002_sam_11621
crossref_primary_10_1109_TKDE_2024_3484161
crossref_primary_10_1109_TMM_2025_3535360
crossref_primary_10_1109_TPAMI_2024_3521022
crossref_primary_10_1109_TPAMI_2022_3233635
crossref_primary_10_1109_TKDE_2023_3340743
crossref_primary_10_1016_j_neucom_2024_128252
crossref_primary_10_1016_j_ymeth_2024_09_015
crossref_primary_10_1109_TNNLS_2024_3424464
crossref_primary_10_1109_TPAMI_2023_3337195
Cites_doi 10.1109/TPAMI.2019.2895608
10.1609/aaai.v30i1.10249
10.1023/A:1012450327387
10.7551/mitpress/1120.003.0052
10.1162/NECO_a_00872
10.1109/TPAMI.2020.3001433
10.1109/TPAMI.2018.2879108
10.1109/TPAMI.2018.2847335
10.1109/tpami.2019.2892416
10.1016/j.patcog.2014.05.005
10.1109/TFUZZ.2011.2170175
10.1109/TPAMI.2020.3011148
10.1137/S0036144596302644
10.1137/1.9781611972795.55
10.1109/TPAMI.2011.255
10.1109/tpami.2021.3116948
10.1109/ICCV48922.2021.00916
10.1609/aaai.v31i1.10895
10.24963/ijcai.2019/524
10.1109/TIT.2010.2069250
10.1109/TPAMI.2020.3037734
10.1109/TPAMI.2020.2974828
10.1609/aaai.v31i1.10893
10.1109/ICDM.2012.43
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3198638
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 5186
ExternalDocumentID 35969570
10_1109_TPAMI_2022_3198638
9857664
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2020AAA0107100
– fundername: National Natural Science Foundation of China
  grantid: 61922088
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-4597fba2128cfbb1eaf1113ec3e1753c6d5ecd46a09d92c36cdfd7d4d5a945dd3
IEDL.DBID RIE
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947840300076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 05:25:04 EDT 2025
Sun Nov 30 04:09:53 EST 2025
Wed Feb 19 02:23:55 EST 2025
Sat Nov 29 02:58:20 EST 2025
Tue Nov 18 22:41:42 EST 2025
Wed Aug 27 02:06:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-4597fba2128cfbb1eaf1113ec3e1753c6d5ecd46a09d92c36cdfd7d4d5a945dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9066-1475
PMID 35969570
PQID 2784554720
PQPubID 85458
PageCount 13
ParticipantIDs proquest_miscellaneous_2702484509
proquest_journals_2784554720
crossref_citationtrail_10_1109_TPAMI_2022_3198638
crossref_primary_10_1109_TPAMI_2022_3198638
pubmed_primary_35969570
ieee_primary_9857664
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Gönen (ref6)
ref34
ref15
Cortes (ref36)
ref14
Kloft (ref22) 2011; 12
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Kumar (ref9)
ref19
ref18
Rakotomamonjy (ref28) 2008; 9
Kloft (ref35) 2012; 13
Bang (ref16) 2018
Cortes (ref24) 2012; 13
Li (ref12)
Kumar (ref8)
ref26
ref25
ref20
ref21
Cortes (ref23)
ref27
ref29
ref4
ref3
ref5
Peng (ref7)
References_xml – ident: ref17
  doi: 10.1109/TPAMI.2019.2895608
– start-page: 1704
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref12
  article-title: Multiple kernel clustering with local kernel alignment maximization
– ident: ref13
  doi: 10.1609/aaai.v30i1.10249
– ident: ref27
  doi: 10.1023/A:1012450327387
– volume: 9
  start-page: 2491
  year: 2008
  ident: ref28
  article-title: SimpleMKL
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 795
  year: 2012
  ident: ref24
  article-title: Algorithms for learning kernels based on centered alignment
  publication-title: J. Mach. Learn. Res.
– ident: ref25
  doi: 10.7551/mitpress/1120.003.0052
– volume: 13
  start-page: 2465
  year: 2012
  ident: ref35
  article-title: On the convergence rate of lp-norm multiple kernel learning
  publication-title: J. Mach. Learn. Res.
– ident: ref30
  doi: 10.1162/NECO_a_00872
– ident: ref4
  doi: 10.1109/TPAMI.2020.3001433
– ident: ref18
  doi: 10.1109/TPAMI.2018.2879108
– start-page: 109
  volume-title: Proc. 25th Conf. Uncertainty Artif. Intell.
  ident: ref23
  article-title: L2 regularization for learning kernels
– start-page: 5092
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref7
  article-title: COMIC: Multi-view clustering without parameter selection
– ident: ref10
  doi: 10.1109/TPAMI.2018.2847335
– ident: ref15
  doi: 10.1109/tpami.2019.2892416
– ident: ref33
  doi: 10.1016/j.patcog.2014.05.005
– start-page: 393
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref8
  article-title: A co-training approach for multi-view spectral clustering
– ident: ref5
  doi: 10.1109/TFUZZ.2011.2170175
– ident: ref11
  doi: 10.1109/TPAMI.2020.3011148
– year: 2018
  ident: ref16
  article-title: Robust multiple kernel k-means clustering using min-max optimization
– ident: ref26
  doi: 10.1137/S0036144596302644
– ident: ref1
  doi: 10.1137/1.9781611972795.55
– ident: ref2
  doi: 10.1109/TPAMI.2011.255
– ident: ref21
  doi: 10.1109/tpami.2021.3116948
– ident: ref20
  doi: 10.1109/ICCV48922.2021.00916
– ident: ref31
  doi: 10.1609/aaai.v31i1.10895
– start-page: 2760
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Learning kernels using local Rademacher complexity
– ident: ref32
  doi: 10.24963/ijcai.2019/524
– volume: 12
  start-page: 953
  year: 2011
  ident: ref22
  article-title: ${l}_{p}$lp-norm multiple kernel learning
  publication-title: J. Mach. Learn. Res.
– ident: ref29
  doi: 10.1109/TIT.2010.2069250
– start-page: 1305
  volume-title: Proc. Int Conf. Neural Inf. Process. Syst.
  ident: ref6
  article-title: Localized data fusion for kernel k-means clustering with application to cancer biology
– ident: ref3
  doi: 10.1109/TPAMI.2020.3037734
– ident: ref19
  doi: 10.1109/TPAMI.2020.2974828
– start-page: 1413
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref9
  article-title: Co-regularized multi-view spectral clustering
– ident: ref14
  doi: 10.1609/aaai.v31i1.10893
– ident: ref34
  doi: 10.1109/ICDM.2012.43
SSID ssj0014503
Score 2.6832724
Snippet We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5174
SubjectTerms Ablation
Algorithms
Clustering
Clustering algorithms
Criteria
Kernel
kernel alignment maximization
Kernels
Linear programming
Matrix partitioning
Maximization
Minimization
Multi-view clustering
multiple kernel clustering
Optimization
Partitioning algorithms
Source code
Task analysis
Title SimpleMKKM: Simple Multiple Kernel K-Means
URI https://ieeexplore.ieee.org/document/9857664
https://www.ncbi.nlm.nih.gov/pubmed/35969570
https://www.proquest.com/docview/2784554720
https://www.proquest.com/docview/2702484509
Volume 45
WOSCitedRecordID wos000947840300076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50EdGD70d9UcGTWu22Tdp4W0RRloqgwt5KmkxAkK6su_5-J-kDDyp4CzRNy8w3nZlOMh_AiQglQYPJgBtKUeiDlwVlqMiuTIRalZwzYxzZRPrwkI1G4nEOzruzMIjoNp_hhR26Wr4eq5n9VXYpMoqOeTIP82nK67NaXcUgYY4FmSIYsnBKI9oDMqG4fH4c5PeUCkYRZagiI8QtwWLMBBfMchR_80eOYOX3WNP5nNvV_73tGqw0saU_qMGwDnNYbcBqy9vgN2a8AcvfmhBuwunTq-0QnA-H-ZVfj_282WboD3FS4Zs_DHIkn7YFL7c3z9d3QcOgEKiY9adBQumCKSW5p0yZsuyjNJZaHlWMtkOn4pqh0gmXodAiUjFX2uhUJ5pJkTCt423oVeMKd8GXKk1Do5Iy7suElhIUSCIarrNYlxhyD_qtHAvVtBe3LBdvhUszQlE4NRRWDUWjBg_Ounve6-Yaf87etELuZjby9eCgVVfR2N9HYcupFCilUejBcXeZLMeWQ2SF45mdY_u5EW6EBzu1mru1W3Ts_fzMfViytPP1Dp4D6E0nMzyEBfU5ff2YHBE8R9mRg-cXd-bc7Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqAo9AIU-UmhJpZ7apngT24m5IQQChayQupW4RY49lpBQFi27_f0dOw9xaCv1ZimOE80jM5N5fACfFdMkGkIn0lGIQh-8ImmYIb1yKVrTSCmcC2AT-XRa3N6qmzX4NvbCIGIoPsPvfhly-XZuVv5X2bEqyDuW_BlsCM5T1nVrjTkDLgIOMvkwpOMUSAwtMkwdz25OqysKBtOUYlRVkMxtwYtMKKmERyl-YpECxMrfvc1gdS52_u99d2G79y7j004cXsEatnuwMyA3xL0i78HLJ2MI9-HLjzs_I7gqy-ok7tZx1RcaxiUuWryPy6RCsmqv4efF-ezsMukxFBKTicky4RQwuEaTgSqMa5oJaufB5dFk6Gd0GmkFGsulZsqq1GTSWGdzy63Qigtrszew3s5bfAexNnnOnOFNNtGcjlLkSiI6aYvMNshkBJOBjrXpB4x7nIv7OgQaTNWBDbVnQ92zIYKv4z0P3XiNf-7e90Qed_b0jeBwYFfda-Bj7ROq5CrlKYvg03iZdMcnRHSL85Xf4ye6kdyoCN52bB7PHqTj_Z-feQSbl7Pqur6-mpYHsOVB6Lt6nkNYXy5W-AGem1_Lu8fFxyCkvwHqvt9M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SimpleMKKM%3A+Simple+Multiple+Kernel+K-Means&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Xinwang&rft.date=2023-04-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=45&rft.issue=4&rft.spage=5174&rft.epage=5186&rft_id=info:doi/10.1109%2FTPAMI.2022.3198638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2022_3198638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon