A Novel Linelet-Based Representation for Line Segment Detection
This paper proposes a method for line segment detection in digital images. We propose a novel linelet-based representation to model intrinsic properties of line segments in rasterized image space. Based on this, line segment detection, validation, and aggregation frameworks are constructed. For a nu...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 40; H. 5; S. 1195 - 1208 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper proposes a method for line segment detection in digital images. We propose a novel linelet-based representation to model intrinsic properties of line segments in rasterized image space. Based on this, line segment detection, validation, and aggregation frameworks are constructed. For a numerical evaluation on real images, we propose a new benchmark dataset of real images with annotated lines called YorkUrban-LineSegment. The results show that the proposed method outperforms state-of-the-art methods numerically and visually. To our best knowledge, this is the first report of numerical evaluation of line segment detection on real images. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-8828 1939-3539 2160-9292 1939-3539 |
| DOI: | 10.1109/TPAMI.2017.2703841 |