Deep Convolutional Neural Network for Multi-Modal Image Restoration and Fusion

In this paper, we propose a novel deep convolutional neural network to solve the general multi-modal image restoration (MIR) and multi-modal image fusion (MIF) problems. Different from other methods based on deep learning, our network architecture is designed by drawing inspirations from a new propo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 43; číslo 10; s. 3333 - 3348
Hlavní autoři: Deng, Xin, Dragotti, Pier Luigi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a novel deep convolutional neural network to solve the general multi-modal image restoration (MIR) and multi-modal image fusion (MIF) problems. Different from other methods based on deep learning, our network architecture is designed by drawing inspirations from a new proposed multi-modal convolutional sparse coding (MCSC) model. The key feature of the proposed network is that it can automatically split the common information shared among different modalities, from the unique information that belongs to each single modality, and is therefore denoted with CU-Net, i.e., common and unique information splitting network. Specifically, the CU-Net is composed of three modules, i.e., the unique feature extraction module (UFEM), common feature preservation module (CFPM), and image reconstruction module (IRM). The architecture of each module is derived from the corresponding part in the MCSC model, which consists of several learned convolutional sparse coding (LCSC) blocks. Extensive numerical results verify the effectiveness of our method on a variety of MIR and MIF tasks, including RGB guided depth image super-resolution, flash guided non-flash image denoising, multi-focus and multi-exposure image fusion.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2020.2984244